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[ER 73] Enflo, Per; Rosenthal, Haskell P., Some results
concerning Lp(µ)-spaces. JFA 14 (1973), 325–348.

If 1 < p 6= 2 <∞, µ is finite, and Lp(µ) is non separable, can
Lp(µ) have an unconditional basis?

If the density character of Lp(µ) is at least ℵω the answer is no;
in fact, Lp(µ) does not embed isomorphically into any Banach
space that has an unconditional basis [ER 73].

So it is consistent that Lp{−1,1}2ℵ0 does not embed into a
space with unconditional basis.
Is it consistent that Lp{−1,1}2ℵ0 has an unconditional basis?
Does Lp{−1,1}ℵ1 have an unconditional basis?
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Another topic considered in [ER 73] was (isomorphic)
embeddings of `p(ℵ1) into Lp(µ) with µ finite. When 2 < p <∞
there is no embedding because the formal identity Ip,2 from
Lp(µ) into L2(µ) is a one to one bounded linear operator and
every bounded linear operator from `p(ℵ) into a Hilbert space is
a compact linear operator and hence cannot be one to one if ℵ
is uncountable.
[ER 73] For 1 < p < 2 there is no isomorphic embedding of `p(ℵ1)
into Lp(µ) with µ finite. For p = 1 essentially everything is known and due to Rosenthal [Ros 70].
So if X is any subspace of Lp(µ) with µ finite and, as usual, 1 < p 6= 2 <∞,
`p(ℵ1) does not embed into X .

What can you say about a subspace X of some completely
general Lp space which has the property that `p(ℵ1) does not
embed into X?
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What can you say about a subspace X of some completely
general Lp space which has the property that `p(ℵ1) does not
embed into X?

Conjecture: X must embed into Lp(µ) with µ finite.

[JS 13] The answer is yes for 1 < p < 2.

The “easier" case, when 2 < p <∞, remains open. However,
[JS 13] does contain a characterization of subspaces X of Lp that
do not contain a subspace isomorphic to `p(ℵ1). This
characterization is relatively easy to prove.
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Proposition

Let X be a subspace of some Lp space, 2 < p <∞. The
following are equivalent:
(1) `p(ℵ1) isometrically embeds into X.
(2) There is a subspace of X that is isomorphic to `p(ℵ1) and

is complemented in Lp.
(3) `p(ℵ1) isomorphically embeds into X.
(4) There is no one to one (bounded, linear) operator from X

into a Hilbert space.

(1) ⇒ (2) EVERY isometric copy of an Lp space in an Lp space is
norm one complemented.
(2) ⇒ (3) is obvious; (3) ⇒ (4) was already mentioned. This leaves
only (4) ⇒ (1), but even (3) ⇒ (1) or (2) ⇒ (1) requires some thought.
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following are equivalent:
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(4) There is no one to one (bounded, linear) operator from X

into a Hilbert space.

[Maharam 42] gives that X is a subspace of
Lp := (

∑
γ∈Γ Lp{−1,1}ℵγ )p for some set Γ of ordinal numbers,

where {−1,1} is endowed with the uniform probability measure.
(4) ⇒ (1): For countable Γ′ ⊂ Γ, the projection
PΓ′ : Lp → (

∑
γ∈Γ′ Lp{−1,1}ℵγ )p is not one to one on X ,

because (
∑

γ∈Γ′ Lp{−1,1}ℵγ )p maps one to one into the Hilbert
space (

∑
γ∈Γ′ L2{−1,1}ℵγ )2 in an obvious way when Γ′ is

countable.
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γ∈Γ′ Lp{−1,1}ℵγ )p maps one to one into the Hilbert
space (

∑
γ∈Γ′ L2{−1,1}ℵγ )2 in an obvious way when Γ′ is

countable.

On the other hand, given any x in X , there is a countable
subset x(Γ) of Γ so that Pγx = 0 for all γ not in x(Γ). Thus if
one takes a collection of unit vectors x in X maximal with
respect to the property that x(Γ) ∩ y(Γ) = ∅ when x 6= y , then
the collection must have cardinality at least ℵ1 and hence
`p(ℵ1) embeds isometrically into X .
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Theorem.

Let X be a subspace of some Lp space, 1 < p < 2. Then X
embeds into Lp(µ) for some finite measure µ if and only if
`p(ℵ1) does not embed (isomorphically) into X.

Assume X ⊂ Lp := (
∑

γ∈Γ Lp{−1,1}ℵγ )p but X 6↪→ Lp(µ) with µ
a finite measure.
Since disjoint unit vectors (xα)α∈A act just like the unit vector
basis of `p(A), one would like to find such with |A| = ℵ1.
Examples show that this cannot be done. However, if we just
wanted to find a copy of `p in X , it would be enough to get unit
vectors (xn)∞n=1 which are “almost disjoint"– a perturbation
argument would then get an isomorphic copy of `p in X . For
p = 1, the unit vector basis for `1(A) is very stable under
perturbations; this is what Rosenthal used in proving the
theorem for p = 1. When p > 1, something more is needed.
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Theorem.
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γ∈Γ Lp{−1,1}ℵγ )p but X 6↪→ Lp(µ) with µ
a finite measure.

Idea: Build a long unconditionally basic sequence (xα)α<ℵ1 of
unit vectors in X that have “big disjoint pieces". The type p
property of Lp and unconditionality give
‖

∑
α tαxa‖ ≤ C(

∑
α |tα|p)1/p and the “diagonal principle" gives

the corresponding lower estimate.
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X ⊂ Lp := (
∑

γ∈Γ Lp{−1,1}ℵγ )p, 1 < p < 2.
X 6↪→ Lp(µ) with µ a finite measure.
Call a set S of vectors in Lp = (

∑
γ∈Γ Lp{−1,1}ℵγ )p a

generalized martingale difference set (GMD set, in short)
provided that for every finite subset F of S and every γ in Γ, the
sequence (Pγx)x∈F can be ordered to be a martingale
difference sequence. We allow 0 to appear in a martingale
difference sequence, but the definition requires that Pγx 6= Pγy
if Pγx 6= 0. Since a martingale difference sequence is
unconditional in Lp(µ) for any probability µ, any 1 < p <∞, and
with the unconditional constant depending only on p [Burkholder 73], a
GMD set in Lp is unconditionally basic for our range of p.
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So we want to build in X an uncountable GMD set that have big
disjoint pieces. Since here “big" only means “bounded away
from zero in norm", having disjoint pieces is enough.

X ⊂ Lp := (
∑

γ∈Γ Lp{−1,1}ℵγ )p, 1 < p < 2.

X 6↪→ Lp(µ) with µ a finite measure.

GMD set: For every finite subset F of S and every γ in Γ, the
sequence (Pγx)x∈F can be ordered to be a martingale
difference sequence.

Take a set V of pairs (x , γ(x))x∈M in X × Γ maximal with
respect to the properties that ‖x‖ = 1, Pγ(x)x 6= 0, the γ(x) are
all distinct, and M is a GMD set.

One page of argument is sufficient to show that M is
uncountable.
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Higher cardinals

A Banach space X is an Lp(ℵ) space, where ℵ is an infinite
cardinal, provided X is isometric to (

∑
α∈Γ Lp(µα))p with |Γ| ≤ ℵ

and each µα a finite measure.

Proposition

Let X be a subspace of some Lp space, 2 < p <∞, and let ℵ
be an uncountable cardinal. The following are equivalent:
(1) `p(ℵ) isometrically embeds into X.
(2) There is a subspace of X that is isomorphic to `p(ℵ) and is

complemented in Lp.
(3) `p(ℵ) isomorphically embeds into X.
(4) There is no one to one (bounded, linear) operator from X

into an Lp(Γ) space with Γ < ℵ.
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X is an Lp(ℵ) space if X is isometric to (
∑

α∈Γ Lp(µα))p with
|Γ| ≤ ℵ and µa finite.

Theorem.

Let X be a subspace of some Lp space, 1 < p < 2, and let ℵ be
an uncountable cardinal. The following are equivalent.
(1) For all ε > 0, `p(ℵ) is 1 + ε-isomorphic to a subspace of X .
(2) There is a subspace of X that is isomorphic to `p(ℵ) and is

complemented in Lp.
(3) `p(ℵ) isomorphically embeds into X.
(4) X does not isomorphically embed into an Lp(ℵ′) space with
ℵ′ < ℵ.

Lemma.
Let 1 < p < 2 and let ℵ be an uncountable cardinal. If ℵ′ < ℵ,
then `p(ℵ) is not isomorphic to a subspace of any Lp(ℵ′) space.
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Open Problems

1. Does Lp{−1,1}ℵ1 , 1 < p 6= 2 <∞, have an unconditional
basis or at least embed into a space that has an unconditional
basis?
2. If X is a subspace of some Lp space, 2 < p <∞, and `p(ℵ1)
does not embed into X , must X embed into Lp(µ) for some
finite measure µ?
3. Can Lp{−1,1}ℵ1 , 2 < p <∞, be written as an unconditional
sum of subspaces each of which is isomorphic to a Hilbert
space?

If Lp{−1,1}ℵ1 has an unconditional basis, then (3) has an
affirmative answer by an old result of Kadec and Pełczyński.
But we do not know how to prove even that Lp{−1,1}ℵ1 cannot
be written as an unconditional sum of subspaces that are
uniformly isomorphic to Hilbert spaces.
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But we do not know how to prove even that Lp{−1,1}ℵ1 cannot
be written as an unconditional sum of subspaces that are
uniformly isomorphic to Hilbert spaces.

Bill Johnson Results in non separable Banach space theory



Open Problems

1. Does Lp{−1,1}ℵ1 , 1 < p 6= 2 <∞, have an unconditional
basis or at least embed into a space that has an unconditional
basis?
2. If X is a subspace of some Lp space, 2 < p <∞, and `p(ℵ1)
does not embed into X , must X embed into Lp(µ) for some
finite measure µ?
3. Can Lp{−1,1}ℵ1 , 2 < p <∞, be written as an unconditional
sum of subspaces each of which is isomorphic to a Hilbert
space?

If Lp{−1,1}ℵ1 has an unconditional basis, then (3) has an
affirmative answer by an old result of Kadec and Pełczyński.
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Operators with dense range on `∞

WBJ, A. B. Nasseri, G. Schechtman, T. Tkocz

In

http://mathoverflow.net/questions/101253

Nasseri asked

“Can anyone give me an example of an (sic) bounded and
linear operator T : `∞ → `∞ (the space of bounded sequences
with the usual sup-norm), such that T has dense range, but is
not surjective?"
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“Is there a dense range non surjective operator on `∞?

Looks easy, yes?

On separable infinite dimensional spaces, there are always dense range
compact operators, but compact operators have separable
ranges. On a non separable space, even on a dual to a separable space it can
happen that every dense range operator is surjective:

[Argyros, Arvanitakis, Tolias ’06] constructed a separable space X so that X ∗

is non separable, hereditarily indecomposable (HI), and every
strictly singular operator on X ∗ is weakly compact. Since X ∗ is
HI, every operator on X ∗ is of the form λI + S with S strictly
singular. If λ 6= 0, then λI + S is Fredholm of index zero by
Kato’s classical perturbation theory. On the other hand, since
every weakly compact subset of the dual to a separable space
is norm separable, every strictly singular operator on X ∗ has
separable range.
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It turns out that Nasseri’s problem is related to Tauberian
operators on L1 = L1(0,1).

An operator T : X → Y is called Tauberian if T ∗∗−1(Y ) = X
[Kalton, Wilansky ’76]. The recent book [Gonzáles, Martínez-Abejón ’10] on Tauberian
operators contains:

Theorem: Let T : L1(0,1)→ Y . TFAE

0. T is Tauberian.
1. For all normalized disjoint sequences {xi},

lim infi→∞ ‖Txi‖ > 0.
2. If {xi} is equivalent to the unit vector basis of `1 then there

is an N such that T|[xi ]
∞
i=N

is an isomorphism.
3. There are ε, δ > 0 such that ‖Tf‖ ≥ ε‖f‖ for all f with
|supp(f )| < δ.
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T : X → Y is Tauberian: T ∗∗−1(Y ) = X .

What is the connection between Tauberian operators on L1 and
dense range, non surjective operators on `∞?

If T is 1-1 Tauberian, T ∗∗ is 1-1.

Thus, if T is a Tauberian operator on L1 that is 1-1 but does not
have closed range, then T ∗ is a dense range operator on L∞
that is not surjective.

Since L∞ is isomorphic to `∞ [Pełcziński, ’58], this would answer
Nasseri’s question.

In fact, we checked that whether there is such an operator on L1 is a priori equivalent to Nasseri’s question.
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T : X → Y is Tauberian: T ∗∗−1(Y ) = X .

One of the main open problems mentioned in [Gonzáles, Martínez-Abejón ’10]

is:

Is there a Tauberian operator T on L1 whose kernel is infinite
dimensional?

IfT satisfies this condition, then you can play around and get a
perturbation S of T that is Tauberian, 1-1, and has dense, non
closed range (so is not surjective). Taking the adjoint of S and
replacing L∞ by its isomorphic `∞, you would have a 1-1,
dense range, non surjective operator on `∞. To get S from T , take a 1-1

nuclear operator from the kernel on T that has dense range in L1, extend it to a nuclear operator on L1, and add it to

T . This does not quite work, but some fiddling produces the desired S.
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Bottom line: The question whether there is a dense range non
surjective operator on the non separable space `∞ is really a
question about the existence of a Tauberian operator with
infinite dimensional kernel on the separable space L1 .

Theorem: [G, M-A, ’10] Let T : L1(0,1)→ Y . TFAE

0. T is Tauberian.
3. There are ε, δ > 0 such that ‖Tf‖ ≥ ε‖f‖ for all f with
|supp(f )| < δ.

T satisfying condition (3) and having an infinite dimensional
kernel has a known finite dimensional analogue:

CS Theorem [Berinde,Gilbert,Indyk,Karloff,Strauss, ’08]:

For each n sufficiently large putting m = [3n/4], there is an
operator T : `n1 → `m1 such that
1
4‖x‖1 ≤ ‖Tx‖1 ≤ ‖x‖1
for all x with ]supp(x) ≤ n/400.

Bill Johnson Results in non separable Banach space theory



Bottom line: The question whether there is a dense range non
surjective operator on the non separable space `∞ is really a
question about the existence of a Tauberian operator with
infinite dimensional kernel on the separable space L1 .

Theorem: [G, M-A, ’10] Let T : L1(0,1)→ Y . TFAE

0. T is Tauberian.
3. There are ε, δ > 0 such that ‖Tf‖ ≥ ε‖f‖ for all f with
|supp(f )| < δ.

T satisfying condition (3) and having an infinite dimensional
kernel has a known finite dimensional analogue:

CS Theorem [Berinde,Gilbert,Indyk,Karloff,Strauss, ’08]:

For each n sufficiently large putting m = [3n/4], there is an
operator T : `n1 → `m1 such that
1
4‖x‖1 ≤ ‖Tx‖1 ≤ ‖x‖1
for all x with ]supp(x) ≤ n/400.

Bill Johnson Results in non separable Banach space theory



Bottom line: The question whether there is a dense range non
surjective operator on the non separable space `∞ is really a
question about the existence of a Tauberian operator with
infinite dimensional kernel on the separable space L1 .

Theorem: [G, M-A, ’10] Let T : L1(0,1)→ Y . TFAE

0. T is Tauberian.
3. There are ε, δ > 0 such that ‖Tf‖ ≥ ε‖f‖ for all f with
|supp(f )| < δ.

T satisfying condition (3) and having an infinite dimensional
kernel has a known finite dimensional analogue:

CS Theorem [Berinde,Gilbert,Indyk,Karloff,Strauss, ’08]:

For each n sufficiently large putting m = [3n/4], there is an
operator T : `n1 → `m1 such that
1
4‖x‖1 ≤ ‖Tx‖1 ≤ ‖x‖1
for all x with ]supp(x) ≤ n/400.

Bill Johnson Results in non separable Banach space theory



CS Theorem [Berinde,Gilbert,Indyk,Karloff,Strauss, ’08; special case]:

For each n sufficiently large putting m = [3n/4], there is an
operator Tn : `n1 → `m1 such that
1
4‖x‖1 ≤ ‖Tnx‖1 ≤ ‖x‖1
for all x with ]supp(x) ≤ n/400.

The kernel of Tn has dimension at least n/4, so if you take the
ultraproduct T̃ of the Tn you get an operator with infinite
dimensional kernel on some gigantic L1 space. Let T be the
restriction of T̃ to some separable T̃ -invariant L1 subspace that
intersects the kernel of T̃ in an infinite dimensional subspace.
As long as T̃ is Tauberian, the operator T will be a Tauberian
operator with infinite dimensional kernel on L1, and we will be
done.

So we need a condition implying Tauberianism that is
possessed by all Tn and is preserved under ultraproducts.
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Say an operator T : X → Y (X an L1 space) is (r ,N)-Tauberian
provided whenever (xn)N

n=1 are disjoint unit vectors in X , then
max1≤n≤N ‖Txn‖ ≥ r .

Lemma T : X → Y is Tauberian iff ∃ r > 0 and N s.t. T is
(r ,N)-Tauberian.

Proof: T being (r ,N)-Tauberian implies that if (xn) is a disjoint
sequence of unit vectors in X , then lim infn ‖Txn‖ > 0, so T is
Tauberian [G,M-A (1)]. Conversely, suppose there are disjoint
collections (xn

k )n
k=1, n = 1,2, . . . with max1≤k≤n ‖Txn

k ‖ → 0 as
n→∞. Then The closed sublattice generated by ∪∞n=1(xn

k )n
k=1

is a separable L1 space, hence is order isometric to L1(µ) for
some probability measure µ by Kakutani’s theorem. Choose
1 ≤ k(n) ≤ n s.t. the support of xn

k(n) in L1(µ) has measure at
most 1/n. Since T is Tauberian, necessarily
lim infn ‖Txn

k(n)‖ > 0 [G, A-M] , a contradiction.
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whenever (xn)N

n=1 are disjoint unit vectors in X , then
max1≤n≤N ‖Txn‖ ≥ r .

Lemma T : X → Y is Tauberian iff ∃ r > 0 and N s.t. T is
(r ,N)-Tauberian.

It is not difficult to prove that the property of being
(r ,N)-Tauberian is stable under ultraproducts of uniformly
bounded operators, so it is just a matter of observing that the
operators Tn of [Berinde,Gilbert,Indyk,Karloff,Strauss, ’08] are all (r ,N)-Tauberian
with (r ,N) independent of n.
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CS Theorem [Berinde,Gilbert,Indyk,Karloff,Strauss, ’08; special case]:

For each n sufficiently large putting m = [3n/4], there is an
operator Tn : `n1 → `m1 such that
1
4‖x‖1 ≤ ‖Tnx‖1 ≤ ‖x‖1
for all x with ]supp(x) ≤ n/400.

T : X → Y (X an L1 space) is (r ,N)-Tauberian provided
whenever (xk )N

k=1 are disjoint unit vectors in X , then
max1≤k≤N ‖Txk‖ ≥ r .

Obviously the Tn are (1/4,400)-Tauberian.
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Summary

There is a non surjective Tauberian operator on L1 that has
dense range. The operator can be chosen either to be 1-1 or to
have infinite dimensional kernel.

Consequently, there is a dense range, non surjective, 1-1
operator on `∞.

Conclusion from the proof: Computer science is connected to
non separable Banach space theory!
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Complemented subspaces of `c∞(λ)

T. Kania, WBJ & G. Schechtman

`c∞(λ) is the set of bounded functions on λ that have countable
support.
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General problem: Classify the complemented subspaces of
C(K ) for K compact.

For metrizable K , this has been done only for c0 ≈ C(N ∪ {∞})
and C(ωω).

For non separable C(K ), this has been done for only a few
spaces: `∞ = C(βN); c0(λ) for any uncountable set λ; direct
sums of some of the above examples.

New examples: `c∞(λ) for any set λ and direct sums of `c∞(λ)
with some of the above.
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Why `c∞(λ)? For example, `∞(λ) is more interesting.

Classifying complemented subspaces of `∞(λ) for all λ is the
same as classifying the injective Banach space. This is a great
problem and nothing has been done on it for more than 40
years. We have no new information on this problem.

Spaces of the form `c∞(λ) are not injective when λ is
uncountable, but they are separably injective (X is separably injective provided

every operator from a subspace of a separable space into X extends to the whole space); in fact, they
form the simplest class of separably injective spaces that have
no separable, infinite dimensional complemented separable
subspaces.

`c∞(λ) for λ ≥ ℵω provide the first examples of C(K ) for which
the complemented subspaces are classified and there are
infinitely many isomorphic types of complemented subspaces.
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Theorem.
Let λ be an infinite cardinal number. Then every infinite
dimensional, complemented subspace of `c∞(λ) is isomorphic
either to `∞ or to `c∞(κ) for some cardinal κ 6 λ. In particular,
`c∞(λ) is a primary Banach space.

There are three main steps in the proof of the classification
theorem, the first being:

Proposition.

Let λ be a cardinal number and let T : `c∞(λ)→ `c∞(λ) be an
operator that is not an isomorphism on any sublattice isometric
to c0(λ). Then for every ε > 0 there is subset Λ of λ so that
|Λ| < λ and

‖TRλ\Λ‖ 6 ε.

Consequently, if also T is a projection onto a subspace X, then
X is isomorphic to a complemented subspace of `c∞(κ) for
some κ < λ.
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Proposition.

T : `c∞(λ)→ `c∞(λ) not an isomorphism on any sublattice
isometric to c0(λ). Then ∀ε > 0 ∃Λ ⊂ λ s.t. |Λ| < λ and
‖TRλ\Λ‖ 6 ε. Consequently, if T is a projection onto a
subspace X, then X is isomorphic to a complemented
subspace of `c∞(κ) for some cardinal number κ < λ.

For the “consequently" statement, suppose that T is a
projection onto a subspace X . Then

IX = (TRλ\Λ + TRΛ)|X ,

so
‖(IX − TRΛ)|X‖ 6 ε

hence if ε < 1, there is an operator U on X so that

IX = (UTRΛ)|X .

Thus IX factors through `c∞(|Λ|).
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The preceding proposition and the next two propositions for the
case Λ = λ, prove, via transfinite induction, the classification
theorem.

Proposition.

If X is complemented in `c∞(λ) and c0(Λ) embeds into X, then
`c∞(Λ) embeds into X.

Proposition.

If X is a subspace of `c∞(λ) that is isomorphic to `c∞(Λ), then
there is a subspace Y of X s.t. Y is isomorphic to `c∞(Λ) and Y
is complemented in `c∞(λ).
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Summary

Proposition.

T : `c∞(λ)→ `c∞(λ) not an isomorphism on any sublattice
isometric to c0(λ). Then ∀ε > 0 ∃Λ ⊂ λ s.t. |Λ| < λ and
‖TRλ\Λ‖ 6 ε. Consequently, if T is a projection onto a
subspace X, then X is isomorphic to a complemented
subspace of `c∞(κ) for some cardinal number κ < λ.

Proposition.

If X is complemented in `c∞(λ) and c0(Λ) embeds into X, then
`c∞(Λ) embeds into X complementably.

Theorem.
Let λ be an infinite cardinal number. Then every infinite
dimensional, complemented subspace of `c∞(λ) is isomorphic
either to `∞ or to `c∞(κ) for some cardinal κ 6 λ.
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Thanks for your attention!
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