Improved Sobolev Inequalities, semi-groups and stratified Lie groups

Diego Chamorro Université d'Evry

```
Laboratoire de Mathématiques et Modélisation
```

Besançon - 01.10.2014

- Introduction
- Stratified Lie groups
- Tools
- 4 Theorems and sketch of the proofs

Classical Sobolev Inequalities (\sim 1938)

 $f:\mathbb{R}^n\longrightarrow\mathbb{R}$

Classical Sobolev Inequalities (\sim 1938)

$$f: \mathbb{R}^n \longrightarrow \mathbb{R}$$

• if
$$1 , $\frac{1}{p} = \frac{1}{n} + \frac{1}{q}$:$$

$$||f||_{L^q} \leq C||(-\Delta)^{\frac{1}{2}}f||_{L^p}$$

where
$$\left((-\Delta)^{\frac{1}{2}}f\right)^{\wedge}(\xi)=c|\xi|\widehat{f}(\xi)$$
.

$$f:\mathbb{R}^n\longrightarrow\mathbb{R}$$

• if $1 , <math>\frac{1}{p} = \frac{1}{n} + \frac{1}{q}$:

$$||f||_{L^q} \leq C||(-\Delta)^{\frac{1}{2}}f||_{L^p}$$

where
$$((-\Delta)^{\frac{1}{2}}f)^{\wedge}(\xi) = c|\xi|\widehat{f}(\xi)$$
.

• if 1=p, $1=\frac{1}{p}+\frac{1}{q}$:

$$||f||_{L^q} \leq C||\nabla f||_{L^1}$$

Classical Sobolev Inequalities (\sim 1938)

$$f: \mathbb{R}^n \longrightarrow \mathbb{R}$$

• if $1 , <math>\frac{1}{p} = \frac{1}{n} + \frac{1}{q}$:

$$||f||_{L^q} \leq C||(-\Delta)^{\frac{1}{2}}f||_{L^p}$$

where
$$((-\Delta)^{\frac{1}{2}}f)^{\wedge}(\xi) = c|\xi|\widehat{f}(\xi)$$
.

• if 1=p, $1=\frac{1}{p}+\frac{1}{q}$:

$$||f||_{L^q} \leq C||\nabla f||_{L^1}$$

Two very different inequalities!

Why so different?

$$\implies$$
 If $1 :$

$$\|(-\Delta)^{\frac{1}{2}}f\|_{L^{p}} \simeq \|\nabla f\|_{L^{p}}$$

since
$$(-\Delta)^{\frac{1}{2}}f = f * K$$

(Hedberg inequality, Lorentz spaces, etc.) \longrightarrow Sobolev inequality

Why so different?

$$\implies$$
 If $1 :$

$$\|(-\Delta)^{\frac{1}{2}}f\|_{L^p} \simeq \|\nabla f\|_{L^p}$$

since
$$(-\Delta)^{\frac{1}{2}}f = f * K$$

(Hedberg inequality, Lorentz spaces, etc.) -> Sobolev inequality

$$\implies$$
 If $1 = p$:

$$\|(-\Delta)^{\frac{1}{2}}f\|_{L^{1}}\neq\|\nabla f\|_{L^{1}}$$

less tools at hand...

Theorem

For a function $\nabla f \in L^p(\mathbb{R}^n)$ and $f \in \dot{B}^{-\beta,\infty}_{\infty}(\mathbb{R}^n)$

$$||f||_{L^q} \le C ||\nabla f||^{\theta}_{L^p} ||f||_{\dot{B}^{-\beta,\infty}_{\infty}}^{1-\theta}$$

where $1 , <math>\theta = p/q$, $\theta = (1 - \theta)\beta$.

$\mathsf{Theorem}$

For a function $\nabla f \in L^p(\mathbb{R}^n)$ and $f \in \dot{B}^{-\beta,\infty}_{\infty}(\mathbb{R}^n)$

$$||f||_{L^q} \leq C||\nabla f||_{L^p}^{\theta}||f||_{\dot{B}_{\infty}^{-\beta,\infty}}^{1-\theta}$$

where
$$1 , $\theta = p/q$, $\theta = (1 - \theta)\beta$.$$

If $q=rac{np}{n-p}$ (Sobolev), we have $L^q\subset \dot{B}^{-eta,\infty}_\infty$ and

$$||f||_{L^{q}} \leq ||\nabla f||_{L^{p}}^{\theta} ||f||_{\dot{B}_{\infty}^{-\beta,\infty}}^{1-\theta} = ||\nabla f||_{L^{p}} \left(\frac{||f||_{\dot{B}_{\infty}^{-\beta,\infty}}}{||\nabla f||_{L^{p}}}\right)^{1-\theta} \leq ||\nabla f||_{L^{p}} \left(\frac{C||f||_{L^{q}}}{||\nabla f||_{L^{p}}}\right)^{1-\theta}$$

$$\leq c' ||\nabla f||_{L^{p}}$$

$\mathsf{Theorem}$

For a function $\nabla f \in L^p(\mathbb{R}^n)$ and $f \in \dot{B}^{-\beta,\infty}_{\infty}(\mathbb{R}^n)$

$$||f||_{L^q} \leq C||\nabla f||_{L^p}^{\theta}||f||_{\dot{B}_{\infty}^{-\beta,\infty}}^{1-\theta}$$

where
$$1 , $\theta = p/q$, $\theta = (1 - \theta)\beta$.$$

If $q = \frac{np}{n-p}$ (Sobolev), we have $L^q \subset \dot{B}_{\infty}^{-\beta,\infty}$ and

$$||f||_{L^{q}} \leq ||\nabla f||_{L^{p}}^{\theta} ||f||_{\dot{B}_{\infty}^{-\beta,\infty}}^{1-\theta} = ||\nabla f||_{L^{p}} \left(\frac{||f||_{\dot{B}_{\infty}^{-\beta,\infty}}}{||\nabla f||_{L^{p}}}\right)^{1-\theta} \leq ||\nabla f||_{L^{p}} \left(\frac{C||f||_{L^{q}}}{||\nabla f||_{L^{p}}}\right)^{1-\theta}$$

$$\leq c' ||\nabla f||_{L^{p}}$$

→ First proof was based in a Littlewood-Paley decomposition

$\mathsf{Theorem}$

For a function $\nabla f \in L^p(\mathbb{R}^n)$ and $f \in \dot{B}^{-\beta,\infty}_{\infty}(\mathbb{R}^n)$

$$||f||_{L^q} \leq C||\nabla f||_{L^p}^{\theta}||f||_{\dot{B}_{\infty}^{-\beta,\infty}}^{1-\theta}$$

where
$$1 , $\theta = p/q$, $\theta = (1 - \theta)\beta$.$$

If $q = \frac{np}{n}$ (Sobolev), we have $L^q \subset \dot{B}_{\infty}^{-\beta,\infty}$ and

$$||f||_{L^{q}} \leq ||\nabla f||_{L^{p}}^{\theta} ||f||_{\dot{B}_{\infty}^{-\beta,\infty}}^{1-\theta} = ||\nabla f||_{L^{p}} \left(\frac{||f||_{\dot{B}_{\infty}^{-\beta,\infty}}}{||\nabla f||_{L^{p}}}\right)^{1-\theta} \leq ||\nabla f||_{L^{p}} \left(\frac{C||f||_{L^{q}}}{||\nabla f||_{L^{p}}}\right)^{1-\theta}$$

$$\leq c' ||\nabla f||_{L^{p}}$$

- First proof was based in a Littlewood-Paley decomposition
- \implies The case p = 1 can not be treated by this method

Improved Sobolev Inequalities (Ledoux \sim 2003)

Theorem

If
$$\nabla f \in L^p(\mathbb{R}^n)$$
 and $f \in \dot{B}^{-\beta,\infty}_{\infty}(\mathbb{R}^n)$, we have

$$||f||_{L^q} \leq C||\nabla f||_{L^p}^{\theta}||f||_{\dot{B}_{\infty}^{-\beta,\infty}}^{1-\theta}$$

with
$$1 \le p < q < +\infty$$
, $\theta = p/q$ and $\beta = \theta/(1-\theta)$.

Improved Sobolev Inequalities (Ledoux \sim 2003)

Theorem

If
$$\nabla f \in L^p(\mathbb{R}^n)$$
 and $f \in \dot{B}^{-\beta,\infty}_\infty(\mathbb{R}^n)$, we have

$$||f||_{L^q} \leq C||\nabla f||_{L^p}^{\theta}||f||_{\dot{B}_{\infty}^{-\beta,\infty}}^{1-\theta}$$

with
$$1 \le p < q < +\infty$$
, $\theta = p/q$ and $\beta = \theta/(1-\theta)$.

⇒ Semi-group properties related to Laplacian and heat kernel

Improved Sobolev Inequalities (Ledoux \sim 2003)

Theorem

If
$$abla f \in L^p(\mathbb{R}^n)$$
 and $f \in \dot{B}^{-eta,\infty}_\infty(\mathbb{R}^n)$, we have

$$||f||_{L^q} \le C ||\nabla f||_{L^p}^{\theta} ||f||_{\dot{B}_{\infty}^{-\beta,\infty}}^{1-\theta}$$

with
$$1 \le p < q < +\infty$$
, $\theta = p/q$ and $\beta = \theta/(1-\theta)$.

⇒ Semi-group properties related to Laplacian and heat kernel

We will see here how to improve these inequalities in the setting of Stratified Lie groups

The structure of the Heisenberg group

• Consider $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ and the non commutative group law

$$x \cdot y = (x_1, x_2, x_3) \cdot (y_1, y_2, y_3) = (x_1 + y_1, x_2 + y_2, x_3 + y_3 + \frac{1}{2}(x_1y_2 - y_1x_2)).$$

Define δ_{α} for $\alpha > 0$ by

$$\delta_{\alpha} : \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$$

$$x = (x_{1}, x_{2}, x_{3}) \longmapsto \delta_{\alpha}[x] = (\alpha x_{1}, \alpha x_{2}, \alpha^{2} x_{3})$$

Topological dimension n=3, Homogeneous dimension N=4.

The structure of the Heisenberg group

• Consider $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ and the non commutative group law

$$x \cdot y = (x_1, x_2, x_3) \cdot (y_1, y_2, y_3) = (x_1 + y_1, x_2 + y_2, x_3 + y_3 + \frac{1}{2}(x_1y_2 - y_1x_2)).$$

• Define δ_{α} for $\alpha > 0$ by

$$\begin{array}{ccc} \delta_{\alpha}: \mathbb{R}^{3} & \longrightarrow & \mathbb{R}^{3} \\ x = (x_{1}, x_{2}, x_{3}) & \longmapsto & \delta_{\alpha}[x] = (\alpha x_{1}, \alpha x_{2}, \alpha^{2} x_{3}) \end{array}$$

Topological dimension n=3, Homogeneous dimension N=4.

 $\implies \mathbb{H} = (\mathbb{R}^3, \cdot, \delta)$ corresponds to the Heisenberg group

• Consider $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ and the non commutative group law

$$x \cdot y = (x_1, x_2, x_3) \cdot (y_1, y_2, y_3) = (x_1 + y_1, x_2 + y_2, x_3 + y_3 + \frac{1}{2}(x_1y_2 - y_1x_2)).$$

• Define δ_{α} for $\alpha > 0$ by

$$\begin{array}{ccc} \delta_{\alpha}: \mathbb{R}^{3} & \longrightarrow & \mathbb{R}^{3} \\ x = (x_{1}, x_{2}, x_{3}) & \longmapsto & \delta_{\alpha}[x] = (\alpha x_{1}, \alpha x_{2}, \alpha^{2} x_{3}) \end{array}$$

Topological dimension n=3, Homogeneous dimension N=4.

 $\implies \mathbb{H} = (\mathbb{R}^3, \cdot, \delta)$ corresponds to the Heisenberg group

- Norm : $||x|| = \left[\left(x_1^2 + x_2^2 \right)^2 + 16x_3^2 \right]^{\frac{1}{4}}$
- Distance : $d(x, y) = ||y^{-1} \cdot x||$
- Haar measure = Lebesgue measure

Vector fields

We have a Lie algebra $\mathfrak h$ given by the vector fields

$$X_1 = \frac{\partial}{\partial x_1} - \frac{1}{2}x_2\frac{\partial}{\partial x_3}, \quad X_2 = \frac{\partial}{\partial x_2} + \frac{1}{2}x_1\frac{\partial}{\partial x_3} \quad \text{and} \quad T = \frac{\partial}{\partial x_3}$$

and we have the identities

$$[X_1, X_2] = X_1 X_2 - X_2 X_1 = T,$$
 $[X_i, T] = [T, X_i] = 0$ where $i = 1, 2$.

Vector fields

We have a Lie algebra $\mathfrak h$ given by the vector fields

$$X_1 = \frac{\partial}{\partial x_1} - \frac{1}{2}x_2\frac{\partial}{\partial x_3}, \quad X_2 = \frac{\partial}{\partial x_2} + \frac{1}{2}x_1\frac{\partial}{\partial x_3} \quad \text{and} \quad T = \frac{\partial}{\partial x_3}$$

and we have the identities

$$[X_1, X_2] = X_1X_2 - X_2X_1 = T,$$
 $[X_i, T] = [T, X_i] = 0$ where $i = 1, 2$.

- ⇒ From the point of view of homogeneity we have
 - X_1 and X_2 are homogeneous of degree 1
 -but *T* is *homogeneous* of degree **2** :

Vector fields

We have a Lie algebra $\mathfrak h$ given by the vector fields

$$X_1 = \frac{\partial}{\partial x_1} - \frac{1}{2}x_2\frac{\partial}{\partial x_3}, \quad X_2 = \frac{\partial}{\partial x_2} + \frac{1}{2}x_1\frac{\partial}{\partial x_3} \quad \text{and} \quad T = \frac{\partial}{\partial x_3}$$

and we have the identities

$$[X_1, X_2] = X_1X_2 - X_2X_1 = T,$$
 $[X_i, T] = [T, X_i] = 0$ where $i = 1, 2$.

- ⇒ From the point of view of homogeneity we have
 - X_1 and X_2 are homogeneous of degree 1
 -but *T* is *homogeneous* of degree **2** :

$$X_1(f(\delta_{\alpha}[x])) = \frac{\alpha}{\alpha}(X_1f)(\delta_{\alpha}[x]), \qquad X_2(f(\delta_{\alpha}[x])) = \frac{\alpha}{\alpha}(X_2f)(\delta_{\alpha}[x]),$$
and
$$T(f(\delta_{\alpha}[x])) = \frac{\alpha^2}{\alpha}(Tf)(\delta_{\alpha}[x]).$$

• We define a gradient :

$$\nabla = (\textcolor{red}{X_1}, \textcolor{red}{X_2})$$

We define a Laplacian by the formula

$$\mathcal{J}=-(X_1^2+X_2^2)$$

which is a positive self-adjoint, hypo-elliptic operator.

• We define a gradient :

$$\nabla = (\textcolor{red}{X_1},\textcolor{red}{X_2})$$

We define a Laplacian by the formula

$$\mathcal{J}=-(X_1^2+X_2^2)$$

which is a positive self-adjoint, hypo-elliptic operator.

• We have a spectral decomposition :

$$\mathcal{J} = \int_0^{+\infty} \lambda dE(\lambda)$$

• We define a gradient :

$$\nabla=(X_1,X_2)$$

We define a Laplacian by the formula

$$\mathcal{J}=-(X_1^2+X_2^2)$$

which is a positive self-adjoint, hypo-elliptic operator.

• We have a spectral decomposition :

$$\mathcal{J} = \int_0^{+\infty} \lambda dE(\lambda)$$

• in particular we can define :

$$\mathcal{J}^s = \int_0^{+\infty} \lambda^s dE(\lambda)$$

If s < 0 we have

$$\mathcal{J}^{\frac{-s}{2}}f(x) = C \int_0^{+\infty} t^{\frac{s}{2}-1} H_t f(x) dt$$

Let
$$k \in \mathbb{N}$$
 and $m \in \mathcal{C}^k(\mathbb{R}^+)$, with $\|m\|_{(k)} = \sup_{\substack{0 \le r \le k \\ \lambda > 0}} (1 + \lambda)^k |m^{(r)}(\lambda)|$.

$$m(t\mathcal{J}) = \int_0^{+\infty} m(t\lambda) dE(\lambda)$$

Let
$$k \in \mathbb{N}$$
 and $m \in \mathcal{C}^k(\mathbb{R}^+)$, with $\|m\|_{(k)} = \sup_{\substack{0 \le r \le k \\ \lambda > 0}} (1 + \lambda)^k |m^{(r)}(\lambda)|$.

$$m(t\mathcal{J}) = \int_0^{+\infty} m(t\lambda) dE(\lambda)$$

$$\implies m(t\mathcal{J})(f)(x) = M_t * f(x)$$

Let $k \in \mathbb{N}$ and $m \in C^k(\mathbb{R}^+)$, with $\|m\|_{(k)} = \sup_{\substack{0 \le r \le k \\ \lambda > 0}} (1 + \lambda)^k |m^{(r)}(\lambda)|$.

$$m(t\mathcal{J}) = \int_0^{+\infty} m(t\lambda) dE(\lambda)$$

$$\implies \mathbf{m}(t\mathcal{J})(f)(x) = \mathbf{M_t} * f(x)$$

→ for I a multi-index we have

$$||X^{I}M_{t}(\cdot)||_{L^{p}} \leq C t^{-|I|/2-N/2p'}||m||_{(k)}$$

Example : $m(\lambda) = e^{-\lambda}$

Let $k \in \mathbb{N}$ and $m \in \mathcal{C}^k(\mathbb{R}^+)$, with $\|m\|_{(k)} = \sup_{\substack{0 \le r \le k \\ 1 \le k}} (1 + \lambda)^k |m^{(r)}(\lambda)|$.

$$m(t\mathcal{J}) = \int_0^{+\infty} m(t\lambda) dE(\lambda)$$

$$\implies$$
 $m(t\mathcal{J})(f)(x) = M_t * f(x)$

> for I a multi-index we have

$$||X^{I}M_{t}(\cdot)||_{L^{p}} \leq C t^{-|I|/2-N/2p'}||m||_{(k)}$$

Example: $m(\lambda) = e^{-\lambda}$

 $\implies m(t\mathcal{J}) = e^{-t\mathcal{J}} = H_t$ is the **heat semi-group**.

- Lebesgue spaces $L^p(\mathbb{G})$.
- weak- L^p spaces : $||f||_{L^{p,\infty}} = \sup_{\sigma>0} \{\sigma \mid \{x \in \mathbb{G} : |f(x)| > \sigma\}|^{1/p}\}.$
- Sobolev spaces

$$\|f\|_{\dot{W}^{s,p}} = \|\mathcal{J}^{s/2}f\|_{L^p} \quad (1$$

- Lebesgue spaces $L^p(\mathbb{G})$.
- weak- L^p spaces : $||f||_{L^{p,\infty}} = \sup_{\sigma>0} \{\sigma \mid \{x \in \mathbb{G} : |f(x)| > \sigma\}|^{1/p}\}.$
- Sobolev spaces

$$\|f\|_{\dot{W}^{s,p}} = \|\mathcal{J}^{s/2}f\|_{L^p} \quad (1$$

• weak Sobolev spaces $\dot{W}^{s,p}_{\infty}(\mathbb{G})$:

$$||f||_{\dot{W}^{s,p}_{\infty}} = ||\mathcal{J}^{s/2}f||_{L^{p,\infty}} \qquad (1$$

• Besov spaces $\dot{B}_{\infty}^{-\beta,\infty}(\mathbb{G})$.

$$||f||_{\dot{B}_{\infty}^{-\beta,\infty}} = \sup_{t>0} t^{\beta/2} ||H_t f||_{L^{\infty}}$$

Theorem

Let \mathbb{G} be a stratified Lie group. If $f \in \dot{W}^{s_1,p}(\mathbb{G})$ and $f \in \dot{B}_{\infty}^{-\beta,\infty}(\mathbb{G})$ then

$$||f||_{\dot{W}^{s,q}} \le C||f||_{\dot{W}^{s_1,p}}^{\theta} ||f||_{\dot{B}^{-\beta,\infty}_{\infty}}^{1-\theta}$$

where
$$1 , $\theta = p/q$, $s = \theta s_1 - (1 - \theta)\beta$ and $-\beta < s < s_1$.$$

$$\|\mathcal{J}^{\frac{-(s_1-s)}{2}}f\|_{L^q} \le C\|f\|_{L^p}^{\theta}\|f\|_{\dot{B}_{\infty}^{-\beta-s_1,\infty}}^{1-\theta}$$

⇒ Using the Laplacian negative powers characterization we have

$$\mathcal{J}^{\frac{-(s_1-s)}{2}}f(x) = C\left(\int_0^T t^{\frac{s_1-s}{2}-1}H_tf(x)dt + \int_T^{+\infty} t^{\frac{s_1-s}{2}-1}H_tf(x)dt\right)$$

$$\|\mathcal{J}^{\frac{-(s_1-s)}{2}}f\|_{L^q} \leq C\|f\|_{L^p}^{\theta}\|f\|_{\dot{B}_{\infty}^{-\beta-s_1,\infty}}^{1-\theta}$$

⇒ Using the Laplacian negative powers characterization we have

$$\mathcal{J}^{\frac{-(s_1-s)}{2}}f(x) = C\left(\int_0^T t^{\frac{s_1-s}{2}-1}H_tf(x)dt + \int_T^{+\infty} t^{\frac{s_1-s}{2}-1}H_tf(x)dt\right)$$

 \implies We use the estimates $|H_t f(x)| \le |\mathcal{M}f(x)|$, $|H_t f(x)| \le Ct^{\frac{-\beta-s_1}{2}} ||f||_{\dot{B}_{\infty}^{-\beta-s_1},\infty}$

$$\|\mathcal{J}^{\frac{-(s_1-s)}{2}}f\|_{L^q} \leq C\|f\|_{L^p}^{\theta}\|f\|_{\dot{B}^{-\beta-s_1,\infty}}^{1-\theta}$$

⇒ Using the Laplacian negative powers characterization we have

$$\mathcal{J}^{\frac{-(s_1-s)}{2}}f(x) = C\left(\int_0^T t^{\frac{s_1-s}{2}-1}H_tf(x)dt + \int_T^{+\infty} t^{\frac{s_1-s}{2}-1}H_tf(x)dt\right)$$

- \implies We use the estimates $|H_t f(x)| \le |\mathcal{M}f(x)|, |H_t f(x)| \le Ct^{\frac{-\beta-s_1}{2}} ||f||_{\dot{B}^{-\beta-s_1,\infty}_{\infty}}$
- ⇒ Applying these inequalities we obtain

$$|\mathcal{J}^{\frac{-(s_1-s)}{2}}f(x)| \leq C_1 T^{\frac{s_1-s}{2}} |\mathcal{M}f(x)| + C_2 T^{\frac{-s-\beta}{2}} ||f||_{\dot{B}^{-\beta-s_1,\infty}_{\infty}}.$$

$$\|\mathcal{J}^{\frac{-(s_1-s)}{2}}f\|_{L^q} \leq C\|f\|_{L^p}^{\theta}\|f\|_{\dot{B}_{\infty}^{-\beta-s_1,\infty}}^{1-\theta}$$

⇒ Using the Laplacian negative powers characterization we have

$$\mathcal{J}^{\frac{-(s_1-s)}{2}}f(x) = C\left(\int_0^T t^{\frac{s_1-s}{2}-1}H_tf(x)dt + \int_T^{+\infty} t^{\frac{s_1-s}{2}-1}H_tf(x)dt\right)$$

- \implies We use the estimates $|H_tf(x)| \le |\mathcal{M}f(x)|$, $|H_tf(x)| \le Ct^{\frac{-\beta-s_1}{2}} ||f||_{\dot{B}^{-\beta-s_1,\infty}_\infty}$
- Applying these inequalities we obtain

$$|\mathcal{J}^{\frac{-(s_1-s)}{2}}f(x)| \leq C_1 T^{\frac{s_1-s}{2}} |\mathcal{M}f(x)| + C_2 T^{\frac{-s-\beta}{2}} ||f||_{\dot{B}_{\infty}^{-\beta-s_1,\infty}}.$$

$$\implies \text{Set } \tau = \left(\|f\|_{\dot{B}_{\infty}^{-\beta}-s_1,\infty}/|\mathcal{M}f(x)|\right)^{\frac{2}{\beta+s_1}} \text{ and then }$$

$$|\mathcal{J}^{\frac{-(s_1-s)}{2}}f(x)| \leq C_3 |\mathcal{M}f(x)|^{\theta} ||f||_{\dot{B}_{\infty}^{-\beta-s_1,\infty}}^{1-\theta}$$

Theorem

Let \mathbb{G} be a stratified Lie group. If $\nabla f \in L^1(\mathbb{G})$ and $f \in \dot{B}_{\infty}^{-\beta,\infty}(\mathbb{G})$ then :

[Weak inequalities]

$$||f||_{\dot{\mathcal{W}}_{\infty}^{s,q}} \leq C||\nabla f||_{L^{1}}^{\theta}||f||_{\dot{B}_{\infty}^{-\beta,\infty}}^{1-\theta}$$

where
$$1 < q < +\infty$$
, $0 < s < 1/q < 1$, $\theta = 1/q$ and $\beta = \frac{1-sq}{q-1}$.

[Strong inequalities]

$$||f||_{L^{q}} \leq C ||\nabla f||_{L^{1}}^{\theta} ||f||_{\dot{B}_{\infty}^{-\beta,\infty}}^{1-\theta}$$

where
$$1 < q < +\infty$$
, $\theta = 1/q$ and $\beta = \theta/(1-\theta)$.

Proposition (Modified Poincaré pseudo-inequality (0 $\leq s < 1$))

$$\|\mathcal{J}^{s/2}f - H_t \mathcal{J}^{s/2}f\|_{L^1} \le C t^{\frac{1-s}{2}} \|\nabla f\|_{L^1}.$$

Proposition (Modified Poincaré pseudo-inequality $(0 \le s < 1)$)

$$\|\mathcal{J}^{s/2}f - H_t \mathcal{J}^{s/2}f\|_{L^1} \le C t^{\frac{1-s}{2}} \|\nabla f\|_{L^1}.$$

we have

$$I(f) = (\mathcal{J}^{s/2}f - H_t \mathcal{J}^{s/2}f)(x) = \left(\int_0^{+\infty} m(t\lambda)dE_{\lambda}\right)t^{1-s/2}\mathcal{J}f(x),$$
 with $m(\lambda) = \lambda^{s/2-1}(1 - e^{-\lambda})$ for $\lambda > 0$.

Proposition (Modified Poincaré pseudo-inequality $(0 \le s < 1)$)

$$\|\mathcal{J}^{s/2}f - H_t \mathcal{J}^{s/2}f\|_{L^1} \le C t^{\frac{1-s}{2}} \|\nabla f\|_{L^1}.$$

we have

$$I(f) = (\mathcal{J}^{s/2}f - H_t \mathcal{J}^{s/2}f)(x) = \left(\int_0^{+\infty} m(t\lambda)dE_\lambda\right)t^{1-s/2}\mathcal{J}f(x),$$
with $m(\lambda) = \lambda^{s/2-1}(1 - e^{-\lambda})$ for $\lambda > 0$.

• we cut this function $m(\lambda) = m_0(\lambda) + m_1(\lambda)$

$$I(f) = \left(\int_{0}^{+\infty} m_{0}(t\lambda) dE_{\lambda}\right) t^{1-s/2} \mathcal{J}f(x) + \left(\int_{0}^{+\infty} m_{1}(t\lambda) dE_{\lambda}\right) t^{1-s/2} \mathcal{J}f(x)$$
$$= t^{1-s/2} \mathcal{J}f * M_{t}^{(0)}(x) + t^{1-s/2} \mathcal{J}f * M_{t}^{(1)}(x)$$

Proposition (Modified Poincaré pseudo-inequality ($0 \le s < 1$))

$$\|\mathcal{J}^{s/2}f - H_t \mathcal{J}^{s/2}f\|_{L^1} \le C t^{\frac{1-s}{2}} \|\nabla f\|_{L^1}.$$

we have

$$I(f) = (\mathcal{J}^{s/2}f - H_t \mathcal{J}^{s/2}f)(x) = \left(\int_0^{+\infty} m(t\lambda)dE_\lambda\right)t^{1-s/2}\mathcal{J}f(x),$$
with $m(\lambda) = \lambda^{s/2-1}(1 - e^{-\lambda})$ for $\lambda > 0$.

• we cut this function $m(\lambda) = m_0(\lambda) + m_1(\lambda)$

$$I(f) = \left(\int_{0}^{+\infty} m_{0}(t\lambda) dE_{\lambda} \right) t^{1-s/2} \mathcal{J}f(x) + \left(\int_{0}^{+\infty} m_{1}(t\lambda) dE_{\lambda} \right) t^{1-s/2} \mathcal{J}f(x)$$

$$= t^{1-s/2} \mathcal{J}f * M_{t}^{(0)}(x) + t^{1-s/2} \mathcal{J}f * M_{t}^{(1)}(x)$$

$$= t^{1-s/2} \nabla f * \nabla M_{t}^{(0)}(x) + t^{1-s/2} \nabla f * \nabla M_{t}^{(1)}(x)$$

taking the L¹ norm

$$\|I(f)\|_{L^{1}} \leq t^{1-s/2} \|\nabla f\|_{L^{1}} \|\nabla M_{t}^{(0)}\|_{L^{1}} + t^{1-s/2} \|\nabla f\|_{L^{1}} \|\nabla M_{t}^{(1)}\|_{L^{1}}$$

$$\|\mathcal{J}^{s/2}f\|_{L^{q,\infty}} \leq C\|\nabla f\|_{L^1}^{\theta}\|\mathcal{J}^{s/2}f\|_{\dot{B}_{\infty}^{-\beta-s,\infty}}^{1-\theta}$$

Weak inequalities

$$\|\mathcal{J}^{s/2}f\|_{L^{q,\infty}} \leq C\|\nabla f\|_{L^1}^{\theta}\|\mathcal{J}^{s/2}f\|_{\dot{B}_{\infty}^{-\beta-s,\infty}}^{1-\theta}$$

• By homogeneity, we can suppose $\|\mathcal{J}^{s/2}f\|_{\dot{B}^{-\beta-s,\infty}}\leq 1.$

$$\|\mathcal{J}^{s/2}f\|_{L^{q,\infty}} \leq C\|\nabla f\|_{L^{1}}^{\theta}$$

$$\|\mathcal{J}^{s/2}f\|_{L^{q,\infty}} \leq C\|\nabla f\|_{L^1}^{\theta}\|\mathcal{J}^{s/2}f\|_{\dot{B}_{\infty}^{-\beta-s,\infty}}^{1-\theta}$$

• By homogeneity, we can suppose $\|\mathcal{J}^{s/2}f\|_{\dot{B}^{-\beta-s,\infty}}\leq 1.$

$$\|\mathcal{J}^{s/2}f\|_{L^{q,\infty}} \leq C\|\nabla f\|_{L^{1}}^{\theta}$$

• we need to estimate $\left| \{ x \in \mathbb{G} : |\mathcal{J}^{s/2} f(x)| > \frac{2\alpha}{3} \right|$

$$\|\mathcal{J}^{s/2}f\|_{L^{q,\infty}} \leq C\|\nabla f\|_{L^1}^{\theta}\|\mathcal{J}^{s/2}f\|_{\dot{B}_{\infty}^{-\beta-s,\infty}}^{1-\theta}$$

• By homogeneity, we can suppose $\|\mathcal{J}^{s/2}f\|_{\dot{B}^{-\beta-s,\infty}}\leq 1.$

$$\|\mathcal{J}^{s/2}f\|_{L^{q,\infty}} \leq C\|\nabla f\|_{L^{1}}^{\theta}$$

- we need to estimate $\left|\left\{x \in \mathbb{G} : |\mathcal{J}^{s/2}f(x)| > 2\alpha\right\}\right|$
- $\bullet \ \ \mathsf{since} \ \|\mathcal{J}^{s/2}f\|_{\dot{B}_{\infty}^{-\beta-s,\infty}} \leq 1 \iff \sup_{t > 0} \left\{ t^{\frac{\beta+s}{2}} \|H_t \mathcal{J}^{s/2}f\|_{L^{\infty}} \right\} \leq 1$

$$\|\mathcal{J}^{s/2}f\|_{L^{q,\infty}} \leq C\|\nabla f\|_{L^1}^{\theta}\|\mathcal{J}^{s/2}f\|_{\dot{B}_{\infty}^{-\beta-s,\infty}}^{1-\theta}$$

• By homogeneity, we can suppose $\|\mathcal{J}^{s/2}f\|_{\dot{\mathcal{B}}^{-\beta-s,\infty}} \leq 1$.

$$\|\mathcal{J}^{s/2}f\|_{L^{q,\infty}} \leq C\|\nabla f\|_{L^{1}}^{\theta}$$

- we need to estimate $\left|\left\{x \in \mathbb{G}: |\mathcal{J}^{s/2}f(x)| > 2\alpha\right\}\right|$
- since $\|\mathcal{J}^{s/2}f\|_{\dot{B}_{\infty}^{-\beta-s,\infty}} \leq 1 \iff \sup_{t \geq 0} \left\{ t^{\frac{\beta+s}{2}} \|H_t \mathcal{J}^{s/2}f\|_{L^{\infty}} \right\} \leq 1$
- If $t_{\sim} = \alpha^{-\left(\frac{2}{\beta+s}\right)}$, we obtain $\|H_{t_{\sim}} \mathcal{J}^{s/2} f\|_{L^{\infty}} \leq \alpha$.

$$\left\{x \in \mathbb{G}: |\mathcal{J}^{s/2}f(x)| > \frac{2}{\alpha}\right\} \subset \left\{x \in \mathbb{G}: |\mathcal{J}^{s/2}f(x) - H_{t_{\alpha}}\mathcal{J}^{s/2}f(x)| > \frac{\alpha}{\alpha}\right\}$$

$$\alpha^q \left| \left\{ x \in \mathbb{G} : |\mathcal{J}^{s/2} f(x)| > 2\alpha \right\} \right| \le \alpha^{q-1} \int_{\mathbb{G}} |\mathcal{J}^{s/2} f(x) - \mathcal{H}_{t_{\alpha}} \mathcal{J}^{s/2} f(x)| dx.$$

$$\alpha^{q}\left|\left\{x\in\mathbb{G}:|\mathcal{J}^{s/2}f(x)|>2\alpha\right\}\right|\leq\alpha^{q-1}\int_{\mathbb{G}}|\mathcal{J}^{s/2}f(x)-H_{t_{\alpha}}\mathcal{J}^{s/2}f(x)|dx.$$

Now use the modified Poincaré pseudo-inequality

$$\alpha^{q}\left|\left\{x\in\mathbb{G}:\left|\mathcal{J}^{s/2}f(x)\right|>2\alpha\right\}\right|\leq C\alpha^{q-1}\,t_{\alpha}^{\frac{1-s}{2}}\int_{\mathbb{G}}\left|\nabla f(x)\right|dx.$$

$$\alpha^{q}\left|\left\{x\in\mathbb{G}:|\mathcal{J}^{s/2}f(x)|>2\alpha\right\}\right|\leq\alpha^{q-1}\int_{\mathbb{G}}|\mathcal{J}^{s/2}f(x)-H_{t_{\alpha}}\mathcal{J}^{s/2}f(x)|dx.$$

Now use the modified Poincaré pseudo-inequality

$$\alpha^{q}\left|\left\{x\in\mathbb{G}:\left|\mathcal{J}^{s/2}f(x)\right|>2\alpha\right\}\right|\leq C\alpha^{q-1}\,t_{\alpha}^{\frac{1-s}{2}}\int_{\mathbb{G}}\left|\nabla f(x)\right|dx.$$

But, by the choice of t_{α} , one has

$$\alpha^q \left| \left\{ x \in \mathbb{G} : |\mathcal{J}^{s/2} f(x)| > 2\alpha \right\} \right| \le C \|\nabla f\|_{L^1}$$

$$\alpha^{q}\left|\left\{x\in\mathbb{G}:|\mathcal{J}^{s/2}f(x)|>2\alpha\right\}\right|\leq\alpha^{q-1}\int_{\mathbb{G}}|\mathcal{J}^{s/2}f(x)-H_{t_{\alpha}}\mathcal{J}^{s/2}f(x)|dx.$$

Now use the modified Poincaré pseudo-inequality

$$\alpha^{q}\left|\left\{x\in\mathbb{G}:\left|\mathcal{J}^{s/2}f(x)\right|>2\alpha\right\}\right|\leq C\alpha^{q-1}\,t_{\alpha}^{\frac{1-s}{2}}\int_{\mathbb{G}}\left|\nabla f(x)\right|dx.$$

But, by the choice of t_{α} , one has

$$\alpha^{q} \left| \left\{ x \in \mathbb{G} : |\mathcal{J}^{s/2} f(x)| > 2\alpha \right\} \right| \le C \|\nabla f\|_{L^{1}}$$

$$\iff \|\mathcal{J}^{s/2} f\|_{L^{q,\infty}}^{q} \le C \|\nabla f\|_{L^{1}}$$

Strong inequalities [Ledoux]

When s=0 in the weak inequalities it is possible to obtain stronger estimations.

Proof. we will start with $\|f\|_{\dot{B}^{-\beta,\infty}_{\infty}} \leq 1$ and we study

$$||f||_{L^q} \leq C||\nabla f||_{L^1}^{\theta}$$

Strong inequalities [Ledoux]

When s=0 in the weak inequalities it is possible to obtain stronger estimations.

Proof. we will start with $\|f\|_{\dot{B}^{-\beta,\infty}_{\infty}} \leq 1$ and we study

$$||f||_{L^q} \leq C||\nabla f||_{L^1}^{\theta}$$

We use now the characterization of Lebesgue space given by the distribution function:

$$\frac{1}{5^{q}} \|f\|_{L^{q}}^{q} = \int_{0}^{+\infty} |\{x \in \mathbb{G} : |f(x)| > 5\alpha\}| \, d(\alpha^{q})$$

Strong inequalities [Ledoux]

When s=0 in the weak inequalities it is possible to obtain stronger estimations.

Proof. we will start with $\|f\|_{\dot{B}^{-\beta,\infty}_{\infty}} \leq 1$ and we study

$$||f||_{L^q} \leq C||\nabla f||_{L^1}^{\theta}$$

We use now the characterization of Lebesgue space given by the distribution function:

$$\frac{1}{5^{q}} \|f\|_{L^{q}}^{q} = \int_{0}^{+\infty} |\{x \in \mathbb{G} : |f(x)| > 5\alpha\}| \, d(\alpha^{q})$$

We need to estimate $|\{x \in \mathbb{G} : |f(x)| > 5\alpha\}|$

We need a cut-off function:

$$\Theta_{lpha}(t) = \left\{ egin{array}{ll} \Theta_{lpha}(-t) = -\Theta_{lpha}(t) \ 0 & ext{if} & 0 \leq T \leq lpha \ t - lpha & ext{if} & lpha \leq T \leq Mlpha \ (M - 1)lpha & ext{if} & T > Mlpha \end{array}
ight.$$

we define $f_{\alpha} = \Theta_{\alpha}(f)$.

We need a cut-off function:

$$\Theta_{lpha}(t) = \left\{ egin{array}{ll} \Theta_{lpha}(-t) = -\Theta_{lpha}(t) \ 0 & ext{if} & 0 \leq T \leq lpha \ t - lpha & ext{if} & lpha \leq T \leq Mlpha \ (M - 1)lpha & ext{if} & T > Mlpha \end{array}
ight.$$

we define $f_{\alpha} = \Theta_{\alpha}(f)$.

$$\int_0^{+\infty} |\{x \in \mathbb{G} : |f(x)| > 5\alpha\}| \, d(\alpha^q) \le \int_0^{+\infty} |\underbrace{\{|f_{\alpha}| > 4\alpha\}}_{A_{\alpha}}| \, d(\alpha^q)$$

We need a cut-off function:

$$\Theta_{\alpha}(t) = \begin{cases} \Theta_{\alpha}(-t) = -\Theta_{\alpha}(t) \\ 0 & \text{if} \quad 0 \leq T \leq \alpha \\ t - \alpha & \text{if} \quad \alpha \leq T \leq M\alpha \\ (M - 1)\alpha & \text{if} \quad T > M\alpha \end{cases}$$

we define $f_{\alpha} = \Theta_{\alpha}(f)$.

$$\int_0^{+\infty} |\{x \in \mathbb{G} : |f(x)| > 5\alpha\}| \, d(\alpha^q) \le \int_0^{+\infty} |\underbrace{\{|f_{\alpha}| > 4\alpha\}}_{A_{\alpha}}| \, d(\alpha^q)$$

We define the following sets

$$A_{\alpha} = \{|f_{\alpha}| > 4\alpha\}$$
 $B_{\alpha} = \{|f_{\alpha} - H_{t_{\alpha}}(f_{\alpha})| > \alpha\}$ $C_{\alpha} = \{|H_{t_{\alpha}}(f_{\alpha} - f)| > 2\alpha\}$

$$\int_0^{+\infty} |A_{\alpha}| d(\alpha^q) \leq \int_0^{+\infty} |B_{\alpha}| d(\alpha^q) + \int_0^{+\infty} |C_{\alpha}| d(\alpha^q)$$

$$\int_0^{+\infty} |A_{\alpha}| d(\alpha^q) \leq \int_0^{+\infty} |B_{\alpha}| d(\alpha^q) + \int_0^{+\infty} |C_{\alpha}| d(\alpha^q)$$

Tchebytchev's inequality implies

$$|B_{\alpha}| \leq \alpha^{-1} \int_{\mathbb{G}} |f_{\alpha}(x) - H_{t_{\alpha}}(f_{\alpha})(x)| dx.$$

$$\int_0^{+\infty} |A_{\alpha}| d(\alpha^q) \leq \int_0^{+\infty} |B_{\alpha}| d(\alpha^q) + \int_0^{+\infty} |C_{\alpha}| d(\alpha^q)$$

Tchebytchev's inequality implies

$$|B_{\alpha}| \leq \alpha^{-1} \int_{\mathbb{G}} |f_{\alpha}(x) - H_{t_{\alpha}}(f_{\alpha})(x)| dx.$$

Using the modified Poincaré pseudo-inequality with s=0 we obtain :

$$|B_{\alpha}| \leq C \alpha^{-q} \int_{\{\alpha \leq |f| \leq M\alpha\}} |\nabla f(x)| dx.$$

$$\int_0^{+\infty} |A_{\alpha}| d(\alpha^q) \leq \int_0^{+\infty} |B_{\alpha}| d(\alpha^q) + \int_0^{+\infty} |C_{\alpha}| d(\alpha^q)$$

Tchebytchev's inequality implies

$$|B_{\alpha}| \leq \alpha^{-1} \int_{\mathbb{G}} |f_{\alpha}(x) - H_{t_{\alpha}}(f_{\alpha})(x)| dx.$$

Using the modified Poincaré pseudo-inequality with s=0 we obtain :

$$|B_{\alpha}| \leq C \alpha^{-q} \int_{\{\alpha \leq |f| \leq M\alpha\}} |\nabla f(x)| dx.$$

We integrate now the preceding expression with respect to $d(\alpha^q)$:

$$\int_0^{+\infty} |B_{\alpha}| d(\alpha^q) \leq C q \log(M) \|\nabla f\|_{L^1}$$

$$\int_0^{+\infty} |A_{\alpha}| d(\alpha^q) \leq \int_0^{+\infty} |B_{\alpha}| d(\alpha^q) + \int_0^{+\infty} |C_{\alpha}| d(\alpha^q)$$

Tchebytchev's inequality implies

$$|B_{\alpha}| \leq \alpha^{-1} \int_{\mathbb{G}} |f_{\alpha}(x) - H_{t_{\alpha}}(f_{\alpha})(x)| dx.$$

Using the modified Poincaré pseudo-inequality with s=0 we obtain :

$$|B_{\alpha}| \leq C \alpha^{-q} \int_{\{\alpha \leq |f| \leq M\alpha\}} |\nabla f(x)| dx.$$

We integrate now the preceding expression with respect to $d(\alpha^q)$:

$$\int_{0}^{+\infty} |\mathcal{B}_{\alpha}| d(\alpha^{q}) \leq C q \log(M) \|\nabla f\|_{L^{1}}$$

How to obtain strong inequalities from weak ones?

$$||f||_{\dot{\mathcal{W}}_{\infty}^{s,q}} \leq C||\nabla f||_{L^{1}}^{\theta}||f||_{\dot{B}_{\infty}^{-\beta,\infty}}^{1-\theta}$$

$$\downarrow \downarrow$$

$$||f||_{\dot{\mathcal{W}}^{s,q}} \leq C||\nabla f||_{L^1}^{\theta}||f||_{\dot{B}_{\infty}^{-\beta,\infty}}^{1-\theta}$$

Open problem

How to obtain strong inequalities from weak ones?

$$||f||_{\dot{\mathcal{W}}_{\infty}^{s,q}} \leq C||\nabla f||_{L^{1}}^{\theta}||f||_{\dot{B}_{\infty}^{-\beta,\infty}}^{1-\theta}$$

$$\downarrow \downarrow$$

$$||f||_{\dot{W}^{s,q}} \le C ||\nabla f||_{L^1}^{\theta} ||f||_{\dot{B}^{-\beta,\infty}_{\infty}}^{1-\theta}$$

A first step : $||f||_{\dot{W}^{s,q}}$ with q < r?

- \implies Non-local objects : $\mathcal{J}^{s/2}$
- ⇒ Definition of Sobolev-Lorentz spaces (distribution function)

References

- P. GÉRARD, Y. MEYER & F. ORU. Inégalités de Sobolev Précisées.
 Equations aux Dérivées Partielles, Séminaire de l'Ecole Polytechnique, exposé n° IV (1996-1997)
- M. LEDOUX. On improved Sobolev embedding theorems. Math. Res. Letters 10, 659-669 (2003)
- D. Ch. Improved Sobolev Inequalities and Muckenhoupt weights on stratified Lie groups. J. Math. Anal. Appl. 377, 695–709 (2011)