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Greedy Approximants

Let (ei)
∞
i=1 be a seminormalized basis for a Banach space X ,

i.e. ∃0 < a 6 b
a 6 ‖ei‖ 6 b (i > 1).

For x ∈ X :

x =
∞∑

i=1

aiei (ai = e∗i (x)).

Define a set Λm of m coefficient indices:

|Λm| = m; min{|ai | : i ∈ Λm} > max{|ai | : i /∈ Λm}.

Then
Gm(x) = PΛm(x) :=

∑
i∈Λm

aiei

is an m-th greedy approximation to x .
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The Thresholding Greedy Algorithm (TGA) converges, if
Gm(x) → x .

Example
Suppose x = e1 − 3e2 − 4e5 + 3e7.

G1(x) = −4e5

G2(x) = −4e5 − 3e2 or G2(x) = −4e5 + 3e7

G3(x) = −4e5 − 3e2 + 3e7,

G4(x) = −4e5 − 3e2 + 3e7 + e1
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Convergence of the TGA

Definition (Konyagin-Temlyakov, 1999)
(ei) is quasi-greedy (QG) if there exists a constant K (the
quasi-greedy constant) such that

‖Gn(x)‖ 6 K‖x‖ (x ∈ X , n > 1).

Theorem (Wojtaszczyk, 2000)
(ei) is quasi-greedy (QG) if and only if the TGA converges, i.e.
∀x =

∑∞
i=1 aiei ,

x =
∞∑

i=1

aρx (i)(x)eρx (j)

for every greedy ordering ρx : N → N,

|aρx (i)| > |aρx (i+1)| (i > 1).
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QG Bases

I (ei) is unconditional if every rearrangement of
x =

∑
e∗i (x)ei converges, so

unconditional ⇒ QG.

I (Wojtaszczyk) `2 has a conditional QG basis
I (DKK) Every QG basis of c0 is unconditional
I (DKK) L1[0, 1] has a QG basis (but not the Haar system)
I (DKK) C[0, 1] does not have any QG basis

Question
Does every Banach space contain a QG basic sequence
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Best n-term approximation

For x ∈ X , σn(x) is the error in the best n-term approximation to
x :

σn(x) = inf{‖x −
∑
j∈A

αjej‖ : |A| = n, αj ∈ R}.

Hence
σn(x) 6 ‖x −Gn(x)‖.

Definition
(ei) is greedy with greedy constant C > 1 if

‖x −Gn(x)‖ 6 Cσn(x) (x ∈ X , n ∈ N).
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Example

The unit vector basis of `p or c0 is 1-greedy, i.e.

‖x −Gn(x)‖ = σn(x).

Theorem A (Temlyakov, 1998)
For d > 1 the multivariate Haar basis of Lp[0, 1]d (normalized in
Lp[0, 1]d ) is Cp-greedy for 1 < p < ∞.
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Democratic Bases

Definition
(ei) is democratic with constant ∆ (∆-democratic) if ∀ finite
A, B ⊂ N,

|A| 6 |B| ⇒ ‖
∑
i∈A

ei‖ 6 ∆‖
∑
i∈B

ei‖.

|A| = |B| ⇒ 1
∆
‖

∑
i∈B

ei‖ 6 ‖
∑
i∈A

ei‖ 6 ∆‖
∑
i∈B

ei‖.

Recall that a basis is subsymmetric if it is unconditional and
equivalent to its subsequences:

subsymmetric ⇒ democratic & unconditional.
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Characterization of Greedy Bases

Theorem (Konyagin-Temlyakov, 1999)
Greedy ⇔ unconditional & democratic.

Example
Subsymmetric bases are greedy

Theorem A (Temlyakov, 1998)
The Haar basis of Lp[0, 1] (normalized in Lp[0, 1]) is Cp-greedy
for 1 < p < ∞.

Remark
The greedy constant Cp > 1 unless p = 2.
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K -Greedy ⇒ K -Democratic
Suppose |A| 6 |B| := n. Let ε > 0. Consider

x = (1 + ε)
∑

i∈B\A

ei +
∑
i∈A

ei .

For k = |B \ A|, Gk (x) = (1 + ε)
∑

i∈B\A ei .

‖
∑
i∈A

ei‖ = ‖x −Gk (x)‖

6 Kσk (x)

6 K‖x −
∑

i∈A\B

ei‖

= K‖
∑

i∈A∩B

ei + (1 + ε)
∑

i∈B\A

ei‖

since |A \ B| 6 k . Let ε → 0:

‖
∑
i∈A

ei‖ 6 K‖
∑
i∈B

ei‖.



K -Greedy ⇒ K -Democratic
Suppose |A| 6 |B| := n. Let ε > 0. Consider

x = (1 + ε)
∑

i∈B\A

ei +
∑
i∈A

ei .

For k = |B \ A|, Gk (x) = (1 + ε)
∑

i∈B\A ei .

‖
∑
i∈A

ei‖ = ‖x −Gk (x)‖

6 Kσk (x)

6 K‖x −
∑

i∈A\B

ei‖

= K‖
∑

i∈A∩B

ei + (1 + ε)
∑

i∈B\A

ei‖

since |A \ B| 6 k . Let ε → 0:

‖
∑
i∈A

ei‖ 6 K‖
∑
i∈B

ei‖.



K -Greedy ⇒ K -Democratic
Suppose |A| 6 |B| := n. Let ε > 0. Consider

x = (1 + ε)
∑

i∈B\A

ei +
∑
i∈A

ei .

For k = |B \ A|, Gk (x) = (1 + ε)
∑

i∈B\A ei .

‖
∑
i∈A

ei‖ = ‖x −Gk (x)‖

6 Kσk (x)

6 K‖x −
∑

i∈A\B

ei‖

= K‖
∑

i∈A∩B

ei + (1 + ε)
∑

i∈B\A

ei‖

since |A \ B| 6 k . Let ε → 0:

‖
∑
i∈A

ei‖ 6 K‖
∑
i∈B

ei‖.



K -Greedy ⇒ K -Democratic
Suppose |A| 6 |B| := n. Let ε > 0. Consider

x = (1 + ε)
∑

i∈B\A

ei +
∑
i∈A

ei .

For k = |B \ A|, Gk (x) = (1 + ε)
∑

i∈B\A ei .

‖
∑
i∈A

ei‖ = ‖x −Gk (x)‖

6 Kσk (x)

6 K‖x −
∑

i∈A\B

ei‖

= K‖
∑

i∈A∩B

ei + (1 + ε)
∑

i∈B\A

ei‖

since |A \ B| 6 k . Let ε → 0:

‖
∑
i∈A

ei‖ 6 K‖
∑
i∈B

ei‖.



K -Greedy ⇒ K -Democratic
Suppose |A| 6 |B| := n. Let ε > 0. Consider

x = (1 + ε)
∑

i∈B\A

ei +
∑
i∈A

ei .

For k = |B \ A|, Gk (x) = (1 + ε)
∑

i∈B\A ei .

‖
∑
i∈A

ei‖ = ‖x −Gk (x)‖

6 Kσk (x)

6 K‖x −
∑

i∈A\B

ei‖

= K‖
∑

i∈A∩B

ei + (1 + ε)
∑

i∈B\A

ei‖

since |A \ B| 6 k . Let ε → 0:

‖
∑
i∈A

ei‖ 6 K‖
∑
i∈B

ei‖.



K -Greedy ⇒ K -Democratic
Suppose |A| 6 |B| := n. Let ε > 0. Consider

x = (1 + ε)
∑

i∈B\A

ei +
∑
i∈A

ei .

For k = |B \ A|, Gk (x) = (1 + ε)
∑

i∈B\A ei .

‖
∑
i∈A

ei‖ = ‖x −Gk (x)‖

6 Kσk (x)

6 K‖x −
∑

i∈A\B

ei‖

= K‖
∑

i∈A∩B

ei + (1 + ε)
∑

i∈B\A

ei‖

since |A \ B| 6 k . Let ε → 0:

‖
∑
i∈A

ei‖ 6 K‖
∑
i∈B

ei‖.



Almost greedy bases
Definition
The error in the best n term projection approximating x is given
by

σ̃n(x) = inf{‖x −
∑
j∈A

e∗j (x)ej‖ : |A| 6 n}.

Theorem (DKKT)
The following are equivalent:

I ∃C such that

‖x −Gn(x)‖ 6 Cσ̃n(x) (x ∈ X , n > 1).

I (ei) is QG and democratic.
I ∃C such that

‖x −G2n(x)‖ 6 Cσn(x) (x ∈ X , n > 1).
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Definition
(ei) is almost greedy if (ei) is QG and democratic

Theorem (DKK)
Suppose X has a basis and contains a complemented
subspace with a symmetric basis and finite cotype. Then X has
a an almost greedy basis.
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Chebyshev approximation

For x ∈ X , recall

Gn(x) =
∑

i∈Λn(x)

e∗i (x)ei .

Let
GC

n (x) =
∑

i∈Λn(x)

biei .

be a best approximation to x from span{ei : i ∈ Λn(x)}.

Theorem (DKK)
Let (ei) be almost greedy. Then, for all x ∈ X,

‖x −GC
n (x)‖ 6 Kσn(x) (n > 1)

where K depends on the QG and democratic constant of (ei).
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Duality

Duality fails in general:

I If (ei) is greedy then (e∗i ) may fail to be democratic

I If (ei) is QG then (e∗i ) may fail to be QG.

Definition
The fundamental function ϕ : N → R of (ei) is defined by:

ϕ(n) := sup
|A|6n

‖
∑
i∈A

ei‖.

Hence (ei) is ∆-democratic if ∀ finite A ⊂ N,

ϕ(|A|) 6 ∆‖
∑
i∈A

ei‖.



Duality

Duality fails in general:

I If (ei) is greedy then (e∗i ) may fail to be democratic

I If (ei) is QG then (e∗i ) may fail to be QG.

Definition
The fundamental function ϕ : N → R of (ei) is defined by:

ϕ(n) := sup
|A|6n

‖
∑
i∈A

ei‖.

Hence (ei) is ∆-democratic if ∀ finite A ⊂ N,

ϕ(|A|) 6 ∆‖
∑
i∈A

ei‖.



Duality

Duality fails in general:

I If (ei) is greedy then (e∗i ) may fail to be democratic

I If (ei) is QG then (e∗i ) may fail to be QG.

Definition
The fundamental function ϕ : N → R of (ei) is defined by:

ϕ(n) := sup
|A|6n

‖
∑
i∈A

ei‖.

Hence (ei) is ∆-democratic if ∀ finite A ⊂ N,

ϕ(|A|) 6 ∆‖
∑
i∈A

ei‖.



Duality

Duality fails in general:

I If (ei) is greedy then (e∗i ) may fail to be democratic

I If (ei) is QG then (e∗i ) may fail to be QG.

Definition
The fundamental function ϕ : N → R of (ei) is defined by:

ϕ(n) := sup
|A|6n

‖
∑
i∈A

ei‖.

Hence (ei) is ∆-democratic if ∀ finite A ⊂ N,

ϕ(|A|) 6 ∆‖
∑
i∈A

ei‖.



Duality

Duality fails in general:

I If (ei) is greedy then (e∗i ) may fail to be democratic

I If (ei) is QG then (e∗i ) may fail to be QG.

Definition
The fundamental function ϕ : N → R of (ei) is defined by:

ϕ(n) := sup
|A|6n

‖
∑
i∈A

ei‖.

Hence (ei) is ∆-democratic if ∀ finite A ⊂ N,

ϕ(|A|) 6 ∆‖
∑
i∈A

ei‖.



Definition
A fundamental function (ϕ(n)) has the upper regularity property
(URP) if ∃C > 0 and 0 < β < 1 such that

ϕ(m) 6 C(m/n)βϕ(n) (m > n).

Theorem (DKKT)
If (en) is a greedy (resp. almost greedy) basis whose
fundamental function has URP, then (e∗n) is a greedy (resp.
almost greedy) basic sequence.
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Corollary
Suppose X has type p > 1. If (en) is a greedy basis for X then
(ϕ(n)) has URP. So (e∗n) is a greedy basis for X ∗

Corollary
Let (ei) be a QG basis for a separable Hilbert space. Then both
(ei) and (e∗i ) are almost greedy bases for H.

Theorem (DKKT)
If (ϕ(n)) does not have URP then there exists a reflexive
Banach space with a greedy basis whose fundamental function
equivalent to ϕ whose dual basis is not greedy.
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Characterization of duality

Definition
Let (en) be a basis for X with fundamental function (ϕn). Let
(ϕ∗n) be the fundamental function for (e∗n). Then (en) is
C-bidemocratic if

ϕ(n)ϕ∗(n) 6 Cn (n ∈ N),

i.e., ∥∥∥∥∥ϕ(|A|)
|A|

∑
i∈A

e∗i

∥∥∥∥∥ 6 C (A ⊂ N).

Theorem
Let (en) be a QG basis for X . The following are equivalent:

I (ϕn) is bidemocratic
I Both (ei) and (e∗i ) are almost greedy.
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Corollary
Every greedy basis with fundamental function (ϕ(n)) is
bidemocratic if and only if (ϕ(n)) has URP.



1-Greedy Renormings

Definition
(ei) is suppression C-unconditional if ∀ finite A ⊂ N, and
∀x =

∑
aiei ,

‖PA(x)‖ 6 C‖x‖.

Theorem
(Konyagin-Temlyakov)

I C-unconditional and ∆-democratic ⇒ (C + C3∆)-greedy.
I K -greedy ⇒ K -democratic & suppression K -unconditional.

Corollary

I 1-unconditional & 1-democratic ⇒ 2-greedy
I 1-greedy ⇒ suppression 1-unconditional & 1-democratic
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Theorem (DOSZ)

I ∃ a 1-unconditional & 1-democratic basis that is not
(2− ε)-greedy for any ε > 0.

I ∃ a 1-greedy basis that is not (2− ε)-unconditional for any
ε > 0.



Theorem (Albiac-Wojtaszczyk)
A suppression 1-unconditional basis is 1-greedy iff ‖x‖ is
invariant under all greedy permutations Π(x) of x.

Example
A greedy permutation of x moves to other coordinates some of
the largest coefficients, possibly changes their sign, and leaves
all other nonzero coefficients unchanged. Consider

x = 2e1 − 5e2 − 4e3 + 5e6 − 5e8 − e9.

The vector y below is a greedy permutation of x :

y = 2e1 − 4e3 + 5e4 + 5e6 − 5e7 − e9.

Hence ‖y‖ = ‖x‖ if the basis is 1-greedy.
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Corollary (Albiac-Wojtaszczyk)

I 1-symmetric ⇒ 1-greedy

I ∃ a 1-greedy basis that is not 1-symmetric

Question (Albiac-Wojtaszczyk)
Suppose (ei) is greedy. Is there a renorming of X so that (ei) is
1-greedy in the new norm?
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Theorem (DOSZ)
Suppose (ei) is suppression 1-unconditional, 1-democratic, and

ϕ(n) > Cn (n > 1).

Then (ei) is equivalent to the unit vector basis of `1.

Corollary
The Haar basis for the dyadic Hardy space H1 is greedy but not
1-democratic and suppression 1-unconditional (hence not
1-greedy) in any equivalent norm.

Corollary
The Tsirelson space T has a greedy basis, but no 1-democratic
and suppression 1-unconditional (hence no 1-greedy) basis in
any equivalent norm.
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Recent Positive Results
Theorem (DKOSZ, in press)
Suppose (ei) is unconditional and bidemocratic. Given ε > 0 ∃
an equivalent norm so that (ei) is 1-unconditional,
1-bidemocratic, and (1 + ε)-greedy.

Sketch Proof.
I Characterize K -greedy bases by generalizing the

Albiac-Wojtaszczyk characterization of 1-greedy bases.
I Define the new norm explicitly.
I Show the new norm is an equivalent norm using the

bidemocratic property:∥∥∥∥∥ϕ(|A|)
|A|

∑
i∈A

e∗i

∥∥∥∥∥ 6 C (A ⊂ N).

I Show the norm satisfies the characterization for K = 1 + ε.
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Corollary
for 1 < p < ∞ and ε > 0 ∃ an equivalent norm on Lp[0, 1] so
that the Haar basis is (1 + ε)-greedy.

Theorem (DKOSZ)
Let (ei) be a greedy basis. Given ε > 0, ∃ an equivalent norm
so that (ei) is 1-unconditional and (1 + ε)-democratic, hence
(2 + ε)-greedy.

The main ingredient is a combinatorial lemma which says that
all democratic bases are “sufficiently bidemocratic”.

Lemma
Let (ei) be a normalized 1-unconditional, ∆-democratic basis
with fundamental function (ϕ(n)). Given 0 < q < 1 ∃C(q,∆)
such that for all finite E ⊂ N ∃A ⊂ E with |A| > q|E | such that∥∥∥∥∥ϕ(|A|)

|A|
∑
i∈A

e∗i

∥∥∥∥∥ 6 C.
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Theorem
Suppose (ei) is a greedy basis for X and ϕ(n) � n (e.g. dyadic
H1 and Tsirelson space). Then ∀ε > 0 there is a renorming so
that (ei) is (1 + ε)-greedy.



Question (Albiac-Wojtaszczyk)
Is every 1-greedy basis C-symmetric?

Theorem (DOSZ3)
There is a renorming of `2 ⊕ `2,1 for which the natural basis is
1-greedy. This basis is not subsymmetric

Remark
`2,1 is a Lorentz space:

‖
∑

aiei‖2,1 =
∑

a∗i (
√

i −
√

i − 1).

The renorming of `2 ⊕ `2,1 is not given by a simple formula!
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Greedification
Definition
Let (ei) be a basis for (X , ‖ · ‖). For x ∈ X

I

f (x) = inf{‖y‖ : y is a greedy rearrangement of x}.

I

‖x‖1 = inf{
n∑

i=1

f (xi) : x =
n∑

i=1

xi}.

Remark
‖ · ‖1 = ‖ · ‖ ⇔ (ei) is 1-greedy for ‖ · ‖.

Theorem
For X = `2 ⊕1 `2,1, the natural basis is 1-greedy for ‖ · ‖1 (so
‖ · ‖1 = ‖ · ‖2).
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Open questions about the greedy constant

Question
Is every greedy basis (1 + ε)-greedy in an equivalent norm?

Question
Is every bidemocratic greedy basis 1-greedy in an equivalent
norm?

Question
Let 1 < p < ∞. Is the Haar basis for Lp[0, 1] 1-greedy in an
equivalent norm?


