Greedy Bases and the Greedy Constant

October, 2014

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

References

- DKOSZ SJD, Denka Kutzarova, E. Odell, Th. Schlumprecht and A. Zsák, Renorming spaces with greedy bases, J. Approx Theory, in press.
 - DOSZ SJD, E. Odell, Th. Schlumprecht and A. Zsák, Renormings and symmetry properties of 1-greedy bases, J. Approx. Theory 163 (2011), 1049-1075.
 - DKK SJD, N. J. Kalton and Denka Kutzarova, On the existence of almost greedy bases in Banach spaces, Studia Math. 159 (2003), 67-101.
 - DKKT SJD, Denka Kutzarova, N. J. Kalton and V. N. Temlyakov, The Thresholding Greedy Algorithm, Greedy Bases, and Duality, Constr. Approx. **19** (2003), 575-597.

Greedy Approximants

Let $(e_i)_{i=1}^{\infty}$ be a seminormalized basis for a Banach space X, i.e. $\exists 0 < a \leq b$ $a \leq ||e_i|| \leq b$ $(i \geq 1)$.

For $x \in X$:

$$x=\sum_{i=1}^{\infty}a_ie_i \qquad (a_i=e_i^*(x)).$$

Define a set Λ_m of *m* coefficient indices:

 $|\Lambda_m| = m;$ $\min\{|a_i|: i \in \Lambda_m\} \ge \max\{|a_i|: i \notin \Lambda_m\}.$

Then

$$G_m(x) = P_{\Lambda_m}(x) := \sum_{i \in \Lambda_m} a_i e_i$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

is an *m*-th greedy approximation to *x*.

Greedy Approximants

Let $(e_i)_{i=1}^{\infty}$ be a seminormalized basis for a Banach space X, i.e. $\exists 0 < a \leq b$ $a \leq ||e_i|| \leq b$ $(i \geq 1)$. For $x \in X$:

$$x = \sum_{i=1}^{\infty} a_i e_i$$
 $(a_i = e_i^*(x)).$

Define a set Λ_m of *m* coefficient indices:

$$|\Lambda_m| = m;$$
 $\min\{|a_i|: i \in \Lambda_m\} \ge \max\{|a_i|: i \notin \Lambda_m\}.$

Then

$$G_m(x) = P_{\Lambda_m}(x) := \sum_{i \in \Lambda_m} a_i e_i$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

is an *m*-th greedy approximation to *x*.

Greedy Approximants

Let $(e_i)_{i=1}^{\infty}$ be a seminormalized basis for a Banach space X, i.e. $\exists 0 < a \leq b$ $a \leq ||e_i|| \leq b$ $(i \geq 1)$. For $x \in X$:

$$x = \sum_{i=1}^{\infty} a_i e_i \qquad (a_i = e_i^*(x)).$$

Define a set Λ_m of *m* coefficient indices:

$$|\Lambda_m| = m;$$
 $\min\{|a_i|: i \in \Lambda_m\} \ge \max\{|a_i|: i \notin \Lambda_m\}.$

Then

$$G_m(x) = P_{\Lambda_m}(x) := \sum_{i \in \Lambda_m} a_i e_i$$

is an *m*-th greedy approximation to *x*.

The Thresholding Greedy Algorithm (TGA) converges, if $G_m(x) \rightarrow x$.

Example Suppose $x = e_1 - 3e_2 - 4e_5 + 3e_7$.

 $G_1(x) = -4e_5$

 $egin{aligned} G_2(x) &= -4e_5 - 3e_2 \quad ext{or} \quad G_2(x) &= -4e_5 + 3e_7 \ G_3(x) &= -4e_5 - 3e_2 + 3e_7, \ G_4(x) &= -4e_5 - 3e_2 + 3e_7 + e_1 \end{aligned}$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ● の々で

The Thresholding Greedy Algorithm (TGA) converges, if $G_m(x) \rightarrow x$.

Example

Suppose $x = e_1 - 3e_2 - 4e_5 + 3e_7$.

 $G_1(x) = -4e_5$

 $egin{aligned} G_2(x) &= -4e_5 - 3e_2 \quad ext{or} \quad G_2(x) &= -4e_5 + 3e_7 \ G_3(x) &= -4e_5 - 3e_2 + 3e_7, \ G_4(x) &= -4e_5 - 3e_2 + 3e_7 + e_1 \end{aligned}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The Thresholding Greedy Algorithm (TGA) converges, if $G_m(x) \rightarrow x$.

Example

Suppose $x = e_1 - 3e_2 - 4e_5 + 3e_7$.

 $G_1(x) = -4e_5$ $G_2(x) = -4e_5 - 3e_2$ or $G_2(x) = -4e_5 + 3e_7$ $G_3(x) = -4e_5 - 3e_2 + 3e_7,$ $G_4(x) = -4e_5 - 3e_2 + 3e_7 + e_1$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Convergence of the TGA

Definition (Konyagin-Temlyakov, 1999) (e_i) is quasi-greedy (QG) if there exists a constant K (the quasi-greedy constant) such that

$$\|G_n(x)\|\leqslant K\|x\|\quad (x\in X,n\geqslant 1).$$

Theorem (Wojtaszczyk, 2000)

(*e_i*) is quasi-greedy (QG) if and only if the TGA converges, i.e. $\forall x = \sum_{i=1}^{\infty} a_i e_i$,

$$x = \sum_{i=1}^{\infty} a_{\rho_x(i)}(x) e_{\rho_x(j)}$$

for every greedy ordering $\rho_X : \mathbb{N} \to \mathbb{N}$,

 $|\boldsymbol{a}_{\rho_{X}(i)}| \geqslant |\boldsymbol{a}_{\rho_{X}(i+1)}| \qquad (i \geqslant 1).$

(日) (日) (日) (日) (日) (日) (日)

Convergence of the TGA

Definition (Konyagin-Temlyakov, 1999) (e_i) is quasi-greedy (QG) if there exists a constant K (the quasi-greedy constant) such that

$$\|G_n(x)\| \leqslant K \|x\| \quad (x \in X, n \ge 1).$$

Theorem (Wojtaszczyk, 2000)

(e_i) is quasi-greedy (QG) if and only if the TGA converges, i.e. $\forall x = \sum_{i=1}^{\infty} a_i e_i$,

$$x = \sum_{i=1}^{\infty} a_{\rho_x(i)}(x) e_{\rho_x(j)}$$

for every greedy ordering $\rho_{\mathbf{X}} : \mathbb{N} \to \mathbb{N}$,

$$|a_{\rho_x(i)}| \ge |a_{\rho_x(i+1)}|$$
 $(i \ge 1).$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

(e_i) is unconditional if every rearrangement of x = ∑ e^{*}_i(x)e_i converges, so

unconditional \Rightarrow QG.

► (Wojtaszczyk) ℓ₂ has a conditional QG basis

- (DKK) Every QG basis of c₀ is unconditional
- (DKK) L₁[0, 1] has a QG basis (but not the Haar system)
- (DKK) C[0, 1] does not have any QG basis

Question

(e_i) is unconditional if every rearrangement of x = ∑ e^{*}_i(x)e_i converges, so

unconditional \Rightarrow QG.

- (Wojtaszczyk) l₂ has a conditional QG basis
- ▶ (DKK) Every QG basis of *c*⁰ is unconditional
- (DKK) L₁[0, 1] has a QG basis (but not the Haar system)
- (DKK) C[0, 1] does not have any QG basis

Question

(e_i) is unconditional if every rearrangement of x = ∑ e^{*}_i(x)e_i converges, so

unconditional \Rightarrow QG.

- (Wojtaszczyk) l₂ has a conditional QG basis
- (DKK) Every QG basis of c₀ is unconditional
- ▶ (DKK) *L*₁[0, 1] has a QG basis (but not the Haar system)
- (DKK) C[0, 1] does not have any QG basis

Question

(e_i) is unconditional if every rearrangement of x = ∑ e^{*}_i(x)e_i converges, so

unconditional \Rightarrow QG.

- (Wojtaszczyk) l₂ has a conditional QG basis
- (DKK) Every QG basis of c₀ is unconditional
- ► (DKK) L₁[0, 1] has a QG basis (but not the Haar system)
- ▶ (DKK) C[0, 1] does not have any QG basis

Question

(e_i) is unconditional if every rearrangement of x = ∑ e^{*}_i(x)e_i converges, so

unconditional \Rightarrow QG.

- (Wojtaszczyk) l₂ has a conditional QG basis
- (DKK) Every QG basis of c₀ is unconditional
- ► (DKK) L₁[0, 1] has a QG basis (but not the Haar system)
- (DKK) C[0, 1] does not have any QG basis

Question

Best *n*-term approximation

For $x \in X$, $\sigma_n(x)$ is the error in the best *n*-term approximation to *x*:

$$\sigma_n(x) = \inf\{\|x - \sum_{j \in A} \alpha_j e_j\| : |A| = n, \ \alpha_j \in \mathbf{R}\}.$$

Hence

$$\sigma_n(\mathbf{x}) \leqslant \|\mathbf{x} - \mathbf{G}_n(\mathbf{x})\|.$$

Definition (e_i) is greedy with greedy constant $C \ge 1$ if

 $\|x - G_n(x)\| \leq C\sigma_n(x)$ $(x \in X, n \in \mathbb{N}).$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Best *n*-term approximation

For $x \in X$, $\sigma_n(x)$ is the error in the best *n*-term approximation to *x*:

$$\sigma_n(\mathbf{x}) = \inf\{\|\mathbf{x} - \sum_{j \in \mathbf{A}} \alpha_j \mathbf{e}_j\| : |\mathbf{A}| = n, \ \alpha_j \in \mathbf{R}\}.$$

Hence

$$\sigma_n(\mathbf{x}) \leqslant \|\mathbf{x} - \mathbf{G}_n(\mathbf{x})\|.$$

Definition (e_i) is greedy with greedy constant $C \ge 1$ if

$$\|x - G_n(x)\| \leq C\sigma_n(x)$$
 $(x \in X, n \in \mathbb{N}).$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example

The unit vector basis of ℓ_p or c_0 is 1-greedy, i.e.

$$\|\mathbf{x}-\mathbf{G}_n(\mathbf{x})\|=\sigma_n(\mathbf{x}).$$

Theorem A (Temlyakov, 1998)

For $d \ge 1$ the multivariate Haar basis of $L_p[0, 1]^d$ (normalized in $L_p[0, 1]^d$) is C_p -greedy for 1 .

Example

The unit vector basis of ℓ_p or c_0 is 1-greedy, i.e.

$$\|\mathbf{x}-\mathbf{G}_n(\mathbf{x})\|=\sigma_n(\mathbf{x}).$$

Theorem A (Temlyakov, 1998)

For $d \ge 1$ the multivariate Haar basis of $L_p[0, 1]^d$ (normalized in $L_p[0, 1]^d$) is C_p -greedy for 1 .

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Democratic Bases

Definition (*e_i*) is democratic with constant Δ (Δ -democratic) if \forall finite $A, B \subset \mathbb{N}$,

$$|\mathbf{A}| \leq |\mathbf{B}| \Rightarrow \|\sum_{i \in \mathbf{A}} \mathbf{e}_i\| \leq \Delta \|\sum_{i \in \mathbf{B}} \mathbf{e}_i\|.$$
$$|\mathbf{A}| = |\mathbf{B}| \Rightarrow \frac{1}{\Delta} \|\sum_{i \in \mathbf{B}} \mathbf{e}_i\| \leq \|\sum_{i \in \mathbf{A}} \mathbf{e}_i\| \leq \Delta \|\sum_{i \in \mathbf{B}} \mathbf{e}_i\|.$$

Recall that a basis is subsymmetric if it is unconditional and equivalent to its subsequences:

subsymmetric \Rightarrow democratic & unconditional.

Democratic Bases

Definition (*e_i*) is democratic with constant Δ (Δ -democratic) if \forall finite $A, B \subset \mathbb{N}$,

$$|A| \leqslant |B| \Rightarrow \|\sum_{i \in A} e_i\| \leqslant \Delta \|\sum_{i \in B} e_i\|.$$

 $|A| = |B| \Rightarrow \frac{1}{\Delta} \|\sum_{i \in B} e_i\| \leqslant \|\sum_{i \in A} e_i\| \leqslant \Delta \|\sum_{i \in B} e_i\|.$

Recall that a basis is subsymmetric if it is unconditional and equivalent to its subsequences:

subsymmetric \Rightarrow democratic & unconditional.

Theorem (Konyagin-Temlyakov, 1999) Greedy \Leftrightarrow unconditional & democratic.

Example Subsymmetric bases are greedy

Theorem A (Temlyakov, 1998)

The Haar basis of $L_p[0, 1]$ (normalized in $L_p[0, 1]$) is C_p -greedy for 1 .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Remark The greedy constant $C_p > 1$ unless p = 2.

Theorem (Konyagin-Temlyakov, 1999) Greedy \Leftrightarrow unconditional & democratic.

Example Subsymmetric bases are greedy

Theorem A (Temlyakov, 1998)

The Haar basis of $L_p[0, 1]$ (normalized in $L_p[0, 1]$) is C_p -greedy for 1 .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Remark The greedy constant $C_p > 1$ unless p = 2

Theorem (Konyagin-Temlyakov, 1999) Greedy \Leftrightarrow unconditional & democratic.

Example Subsymmetric bases are greedy

Theorem A (Temlyakov, 1998)

The Haar basis of $L_p[0, 1]$ (normalized in $L_p[0, 1]$) is C_p -greedy for 1 .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Remark The greedy constant $C_p > 1$ unless p = 2

Theorem (Konyagin-Temlyakov, 1999) Greedy \Leftrightarrow unconditional & democratic.

Example Subsymmetric bases are greedy

Theorem A (Temlyakov, 1998)

The Haar basis of $L_p[0, 1]$ (normalized in $L_p[0, 1]$) is C_p -greedy for 1 .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Remark

The greedy constant $C_p > 1$ unless p = 2.

K-Greedy \Rightarrow K-Democratic Suppose $|A| \leq |B| := n$. Let $\varepsilon > 0$. Consider $x = (1 + \varepsilon) \sum e_i + \sum e_i.$ *i*∈B\A *i*∈A For $k = |B \setminus A|$, $G_k(x) = (1 + \varepsilon) \sum_{i \in B \setminus A} e_i$.

K-Greedy \Rightarrow K-Democratic Suppose $|A| \leq |B| := n$. Let $\varepsilon > 0$. Consider $x = (1 + \varepsilon) \sum e_i + \sum e_i.$ *i*∈B\A *i*∈A For $k = |B \setminus A|$, $G_k(x) = (1 + \varepsilon) \sum_{i \in B \setminus A} e_i$. $\|\sum e_i\| = \|x - G_k(x)\|$

 $\|\sum_{i\in A} e_i\| \leqslant K \|\sum_{i\in B} e_i\|$

K-Greedy \Rightarrow K-Democratic Suppose $|A| \leq |B| := n$. Let $\varepsilon > 0$. Consider $x = (1 + \varepsilon) \sum e_i + \sum e_i.$ i∈B∖A i∈A For $k = |B \setminus A|$, $G_k(x) = (1 + \varepsilon) \sum_{i \in B \setminus A} e_i$. $\|\sum e_i\| = \|x - G_k(x)\|$ i∈A

K-Greedy \Rightarrow K-Democratic Suppose $|A| \leq |B| := n$. Let $\varepsilon > 0$. Consider $x = (1 + \varepsilon) \sum e_i + \sum e_i.$ i∈B∖A i∈A For $k = |B \setminus A|$, $G_k(x) = (1 + \varepsilon) \sum_{i \in B \setminus A} e_i$. $\|\sum e_i\|=\|x-G_k(x)\|$ i∈A $\leq K\sigma_k(x)$ $\leq K \| x - \sum e_i \|$ $= K \| \sum e_i + (1 + \varepsilon) \sum e_j \|$ since $|A \setminus B| \leq k$. Let $\varepsilon \to 0$:

K-Greedy \Rightarrow K-Democratic Suppose $|A| \leq |B| := n$. Let $\varepsilon > 0$. Consider $x = (1 + \varepsilon) \sum e_i + \sum e_i.$ i∈B∖A i⊂A For $k = |B \setminus A|$, $G_k(x) = (1 + \varepsilon) \sum_{i \in B \setminus A} e_i$. $\|\sum e_i\|=\|x-G_k(x)\|$ i∈A $\leq K\sigma_k(x)$ $\leq K \| x - \sum e_i \|$ i∈A\B $= K \| \sum e_i + (1 + \varepsilon) \sum e_i \|$ i∈A∩B i∈B\A

 $\|\sum e_i\| \leq K \|\sum e_i\|.$

since $|A \setminus B| \leq k$. Let $\varepsilon \to 0$:

K-Greedy \Rightarrow K-Democratic Suppose $|A| \leq |B| := n$. Let $\varepsilon > 0$. Consider $x = (1 + \varepsilon) \sum e_i + \sum e_i.$ i∈B∖A i⊂A For $k = |B \setminus A|$, $G_k(x) = (1 + \varepsilon) \sum_{i \in B \setminus A} e_i$. $\|\sum e_i\|=\|x-G_k(x)\|$ i∈A $\leq K\sigma_k(x)$ $\leq K \| x - \sum e_i \|$ i∈A\B $= K \| \sum e_i + (1 + \varepsilon) \sum e_i \|$ i∈A∩B i∈B\A

since $|A \setminus B| \leq k$. Let $\varepsilon \to 0$:

$$\|\sum_{i\in A} e_i\| \leqslant K \|\sum_{i\in B} e_i\|.$$

Definition

The error in the best n term projection approximating x is given by

$$\tilde{\sigma}_n(x) = \inf\{\|x - \sum_{j \in A} e_j^*(x)e_j\| : |A| \leq n\}.$$

Theorem (DKKT) The following are equival

► ∃C such that

$$\|x - G_n(x)\| \leq C \tilde{\sigma}_n(x) \qquad (x \in X, n \geq 1).$$

• (e_i) is QG and democratic.

► ∃C such that

 $\|x - G_{2n}(x)\| \leq C\sigma_n(x) \qquad (x \in X, n \geq 1).$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definition

The error in the best n term projection approximating x is given by

$$\widetilde{\sigma}_n(x) = \inf\{\|x - \sum_{j \in A} e_j^*(x)e_j\| : |A| \leq n\}.$$

Theorem (DKKT)

The following are equivalent:

► ∃C such that

$$\|x - G_n(x)\| \leq C \tilde{\sigma}_n(x) \qquad (x \in X, n \geq 1).$$

(e_i) is QG and democratic.
∃C such that

 $\|x - G_{2n}(x)\| \leq C\sigma_n(x) \qquad (x \in X, n \geq 1).$

Definition

The error in the best n term projection approximating x is given by

$$\tilde{\sigma}_n(x) = \inf\{\|x - \sum_{j \in A} \boldsymbol{e}_j^*(x) \boldsymbol{e}_j\|: |A| \leqslant n\}.$$

Theorem (DKKT)

The following are equivalent:

∃C such that

$$\|x - G_n(x)\| \leq C \tilde{\sigma}_n(x) \qquad (x \in X, n \geq 1).$$

► ∃C such that

 $\|x - G_{2n}(x)\| \leq C\sigma_n(x) \qquad (x \in X, n \geq 1).$

Definition

The error in the best n term projection approximating x is given by

$$\tilde{\sigma}_n(x) = \inf\{\|x - \sum_{j \in A} e_j^*(x)e_j\| : |A| \leq n\}.$$

Theorem (DKKT)

The following are equivalent:

∃C such that

$$\|x - G_n(x)\| \leq C \tilde{\sigma}_n(x) \qquad (x \in X, n \geq 1).$$

- (e_i) is QG and democratic.
- ∃C such that

 $\|x - G_{2n}(x)\| \leq C\sigma_n(x) \qquad (x \in X, n \geq 1).$

Definition (e_i) is almost greedy if (e_i) is QG and democratic

Theorem (DKK)

Suppose X has a basis and contains a complemented subspace with a symmetric basis and finite cotype. Then X has a an almost greedy basis.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@
Definition

 (e_i) is almost greedy if (e_i) is QG and democratic

Theorem (DKK)

Suppose X has a basis and contains a complemented subspace with a symmetric basis and finite cotype. Then X has a an almost greedy basis.

(ロ) (同) (三) (三) (三) (○) (○)

Chebyshev approximation

For $x \in X$, recall

$$G_n(x) = \sum_{i \in \Lambda_n(x)} e_i^*(x) e_i.$$

Let

$$G_n^C(x) = \sum_{i \in \Lambda_n(x)} b_i e_i.$$

be a best approximation to x from span{ $e_i : i \in \Lambda_n(x)$ }.

Theorem (DKK)

Let (e_i) be almost greedy. Then, for all $x \in X$,

$$\|x - G_n^C(x)\| \leq K\sigma_n(x) \qquad (n \ge 1)$$

(ロ) (同) (三) (三) (三) (○) (○)

where K depends on the QG and democratic constant of (e_i)

Chebyshev approximation

For $x \in X$, recall

$$G_n(x) = \sum_{i \in \Lambda_n(x)} e_i^*(x) e_i.$$

Let

$$G_n^C(x) = \sum_{i \in \Lambda_n(x)} b_i e_i.$$

be a best approximation to *x* from span{ $e_i : i \in \Lambda_n(x)$ }.

Theorem (DKK)

Let (e_i) be almost greedy. Then, for all $x \in X$,

$$\|x - G_n^C(x)\| \leq K\sigma_n(x) \qquad (n \ge 1)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where K depends on the QG and democratic constant of (e_i)

Chebyshev approximation

For $x \in X$, recall

$$G_n(x) = \sum_{i \in \Lambda_n(x)} e_i^*(x) e_i.$$

Let

$$G_n^C(x) = \sum_{i \in \Lambda_n(x)} b_i e_i.$$

be a best approximation to *x* from span{ $e_i : i \in \Lambda_n(x)$ }.

Theorem (DKK)

Let (e_i) be almost greedy. Then, for all $x \in X$,

$$\|\boldsymbol{x} - \boldsymbol{G}_n^{\boldsymbol{C}}(\boldsymbol{x})\| \leqslant K\sigma_n(\boldsymbol{x}) \qquad (n \ge 1)$$

where K depends on the QG and democratic constant of (e_i) .

Duality fails in general:

- ▶ If (e_i) is greedy then (e_i^*) may fail to be democratic
- ▶ If (e_i) is QG then (e_i^*) may fail to be QG.

Definition The fundamental function $\varphi : \mathbb{N} \to \mathbb{R}$ of (e_i) is defined by:

$$\varphi(n) := \sup_{|A| \leqslant n} \|\sum_{i \in A} e_i\|.$$

Hence (e_i) is Δ -democratic if \forall finite $A \subset \mathbb{N}$.

$$\varphi(|A|) \leq \Delta \|\sum_{i \in A} e_i\|.$$

Duality fails in general:

- If (e_i) is greedy then (e_i^*) may fail to be democratic
- ▶ If (e_i) is QG then (e_i^*) may fail to be QG.

Definition The fundamental function $\varphi : \mathbb{N} \to \mathbb{R}$ of (e_i) is defined by:

$$arphi(n) := \sup_{|A| \leqslant n} \|\sum_{i \in A} e_i\|.$$

Hence (e_i) is Δ -democratic if \forall finite $A \subset \mathbb{N}$,

$$\varphi(|\mathsf{A}|) \leq \Delta \|\sum_{i \in \mathsf{A}} \mathbf{e}_i\|.$$

(日) (日) (日) (日) (日) (日) (日)

Duality fails in general:

- If (e_i) is greedy then (e_i^*) may fail to be democratic
- If (e_i) is QG then (e_i^*) may fail to be QG.

Definition The fundamental function $\varphi : \mathbb{N} \to \mathbb{R}$ of (e_i) is defined by:

$$\varphi(n) := \sup_{|A| \leqslant n} \|\sum_{i \in A} e_i\|.$$

Hence (e_i) is Δ -democratic if \forall finite $A \subset \mathbb{N}_i$

$$\varphi(|A|) \leq \Delta \|\sum_{i \in A} e_i\|.$$

Duality fails in general:

- If (e_i) is greedy then (e_i^*) may fail to be democratic
- If (e_i) is QG then (e_i^*) may fail to be QG.

Definition The fundamental function $\varphi : \mathbb{N} \to \mathbb{R}$ of (e_i) is defined by:

$$\varphi(n) := \sup_{|A| \leqslant n} \|\sum_{i \in A} e_i\|.$$

Hence (e_i) is Δ -democratic if \forall finite $A \subset \mathbb{N}$,

$$\varphi(|A|) \leqslant \Delta \|\sum_{i \in A} e_i\|.$$

Duality fails in general:

- If (e_i) is greedy then (e_i^*) may fail to be democratic
- If (e_i) is QG then (e_i^*) may fail to be QG.

Definition The fundamental function $\varphi : \mathbb{N} \to \mathbb{R}$ of (e_i) is defined by:

$$\varphi(n) := \sup_{|A| \leqslant n} \|\sum_{i \in A} e_i\|.$$

Hence (e_i) is Δ -democratic if \forall finite $A \subset \mathbb{N}$,

$$\varphi(|\mathbf{A}|) \leqslant \Delta \| \sum_{i \in \mathbf{A}} \mathbf{e}_i \|.$$

Definition

A fundamental function ($\varphi(n)$) has the upper regularity property (URP) if $\exists C > 0$ and $0 < \beta < 1$ such that

$$\varphi(m) \leqslant C(m/n)^{\beta} \varphi(n) \qquad (m > n).$$

Theorem (DKKT)

If (e_n) is a greedy (resp. almost greedy) basis whose fundamental function has URP, then (e_n^*) is a greedy (resp. almost greedy) basic sequence.

Definition

A fundamental function ($\varphi(n)$) has the upper regularity property (URP) if $\exists C > 0$ and $0 < \beta < 1$ such that

$$\varphi(m) \leqslant C(m/n)^{\beta} \varphi(n) \qquad (m > n).$$

Theorem (DKKT)

If (e_n) is a greedy (resp. almost greedy) basis whose fundamental function has URP, then (e_n^*) is a greedy (resp. almost greedy) basic sequence.

Suppose X has type p > 1. If (e_n) is a greedy basis for X then $(\varphi(n))$ has URP. So (e_n^*) is a greedy basis for X^*

Corollary

Let (e_i) be a QG basis for a separable Hilbert space. Then both (e_i) and (e_i^*) are almost greedy bases for H.

Theorem (DKKT)

If $(\varphi(n))$ does not have URP then there exists a reflexive Banach space with a greedy basis whose fundamental function equivalent to φ whose dual basis is not greedy.

Suppose X has type p > 1. If (e_n) is a greedy basis for X then $(\varphi(n))$ has URP. So (e_n^*) is a greedy basis for X^*

Corollary

Let (e_i) be a QG basis for a separable Hilbert space. Then both (e_i) and (e_i^*) are almost greedy bases for H.

Theorem (DKKT)

If $(\varphi(n))$ does not have URP then there exists a reflexive Banach space with a greedy basis whose fundamental function equivalent to φ whose dual basis is not greedy.

Suppose X has type p > 1. If (e_n) is a greedy basis for X then $(\varphi(n))$ has URP. So (e_n^*) is a greedy basis for X^*

Corollary

Let (e_i) be a QG basis for a separable Hilbert space. Then both (e_i) and (e_i^*) are almost greedy bases for H.

Theorem (DKKT)

If $(\varphi(n))$ does not have URP then there exists a reflexive Banach space with a greedy basis whose fundamental function equivalent to φ whose dual basis is not greedy.

Characterization of duality

Definition Let (e_n) be a basis for X with fundamental function (φ_n) . Let (φ_n^*) be the fundamental function for (e_n^*) . Then (e_n) is C-bidemocratic if

 $(n) * (n) < \Omega_n \qquad (n = N)$

$$\varphi(\mathbf{n})\varphi(\mathbf{n}) \leqslant \mathbf{C}\mathbf{n} \quad (\mathbf{n} \in \mathbb{N}),$$
$$\left\|\frac{\varphi(|\mathbf{A}|)}{|\mathbf{A}|} \sum_{i \in \mathbf{A}} \mathbf{e}_i^*\right\| \leqslant \mathbf{C} \quad (\mathbf{A} \subset \mathbb{N}).$$

Theorem

Let (e_n) be a QG basis for X. The following are equivalent:

(日) (日) (日) (日) (日) (日) (日)

- (φ_n) is bidemocratic
- Both (e_i) and (e_i^*) are almost greedy.

Characterization of duality

Definition Let (e_n) be a basis for X with fundamental function (φ_n) . Let (φ_n^*) be the fundamental function for (e_n^*) . Then (e_n) is *C*-bidemocratic if

$$\varphi(n)\varphi^*(n)\leqslant Cn \qquad (n\in\mathbb{N}),$$

i.e.,

$$\left\| rac{arphi(|m{A}|)}{|m{A}|} \sum_{i\inm{A}} m{e}^*_i
ight\| \leqslant m{C} \qquad (m{A}\subset\mathbb{N}).$$

Theorem

Let (e_n) be a QG basis for X. The following are equivalent:

(日) (日) (日) (日) (日) (日) (日)

- (φ_n) is bidemocratic
- Both (e_i) and (e_i^*) are almost greedy.

Characterization of duality

Definition Let (e_n) be a basis for X with fundamental function (φ_n) . Let (φ_n^*) be the fundamental function for (e_n^*) . Then (e_n) is *C*-bidemocratic if

$$\varphi(n)\varphi^*(n)\leqslant Cn$$
 $(n\in\mathbb{N}),$

i.e.,

$$\left\| \frac{\varphi(|\mathcal{A}|)}{|\mathcal{A}|} \sum_{i \in \mathcal{A}} \boldsymbol{e}_i^* \right\| \leqslant C \qquad (\mathcal{A} \subset \mathbb{N}).$$

Theorem

Let (e_n) be a QG basis for X. The following are equivalent:

- (φ_n) is bidemocratic
- Both (e_i) and (e_i^*) are almost greedy.

Corollary Every greedy basis with fundamental function ($\varphi(n)$) is bidemocratic if and only if ($\varphi(n)$) has URP.

1-Greedy Renormings

Definition (*e_i*) is suppression *C*-unconditional if \forall finite $A \subset \mathbb{N}$, and $\forall x = \sum a_i e_i$, $\|P_A(x)\| \leq C \|x\|$.

Theorem (Konyagin-Temlyakov)

- *C*-unconditional and Δ -democratic \Rightarrow (*C* + *C*³ Δ)-greedy.
- *K*-greedy \Rightarrow *K*-democratic & suppression *K*-unconditional.

Corollary

- ▶ 1-unconditional & 1-democratic ⇒ 2-greedy
- I-greedy ⇒ suppression 1-unconditional & 1-democratic

1-Greedy Renormings

Definition (*e_i*) is suppression *C*-unconditional if \forall finite $A \subset \mathbb{N}$, and $\forall x = \sum a_i e_i$, $\|P_A(x)\| \leq C \|x\|$.

Theorem (Konyagin-Temlyakov)

- *C*-unconditional and Δ -democratic \Rightarrow (*C* + *C*³ Δ)-greedy.
- *K*-greedy \Rightarrow *K*-democratic & suppression *K*-unconditional.

Corollary

- ▶ 1-unconditional & 1-democratic ⇒ 2-greedy
- ▶ 1-greedy ⇒ suppression 1-unconditional & 1-democratic

1-Greedy Renormings

Definition (*e_i*) is suppression *C*-unconditional if \forall finite $A \subset \mathbb{N}$, and $\forall x = \sum a_i e_i$, $\|P_A(x)\| \leq C \|x\|$.

Theorem (Konyagin-Temlyakov)

- *C*-unconditional and Δ -democratic \Rightarrow (*C* + *C*³ Δ)-greedy.
- *K*-greedy \Rightarrow *K*-democratic & suppression *K*-unconditional.

Corollary

- ▶ 1-unconditional & 1-democratic ⇒ 2-greedy
- ▶ 1-greedy ⇒ suppression 1-unconditional & 1-democratic

- ∃ a 1-unconditional & 1-democratic basis that is not (2 − ε)-greedy for any ε > 0.
- ► \exists a 1-greedy basis that is not (2ε) -unconditional for any $\varepsilon > 0$.

Theorem (Albiac-Wojtaszczyk)

A suppression 1-unconditional basis is 1-greedy iff ||x|| is invariant under all greedy permutations $\Pi(x)$ of x.

Example

A greedy permutation of x moves to other coordinates some of the largest coefficients, possibly changes their sign, and leaves all other nonzero coefficients unchanged. Consider

$$x = 2e_1 - 5e_2 - 4e_3 + 5e_6 - 5e_8 - e_9.$$

The vector *y* below is a greedy permutation of *x*:

$$y = 2e_1 - 4e_3 + 5e_4 + 5e_6 - 5e_7 - e_9.$$

(日) (日) (日) (日) (日) (日) (日)

Hence ||y|| = ||x|| if the basis is 1-greedy.

Theorem (Albiac-Wojtaszczyk)

A suppression 1-unconditional basis is 1-greedy iff ||x|| is invariant under all greedy permutations $\Pi(x)$ of x.

Example

A greedy permutation of x moves to other coordinates some of the largest coefficients, possibly changes their sign, and leaves all other nonzero coefficients unchanged. Consider

$$x = 2e_1 - 5e_2 - 4e_3 + 5e_6 - 5e_8 - e_9.$$

The vector *y* below is a greedy permutation of *x*:

$$y = 2e_1 - 4e_3 + 5e_4 + 5e_6 - 5e_7 - e_9.$$

Hence ||y|| = ||x|| if the basis is 1-greedy.

Corollary (Albiac-Wojtaszczyk)

- 1-symmetric \Rightarrow 1-greedy
- ▶ ∃ a 1-greedy basis that is not 1-symmetric

Question (Albiac-Wojtaszczyk)

Suppose (e_i) is greedy. Is there a renorming of X so that (e_i) is 1-greedy in the new norm?

Corollary (Albiac-Wojtaszczyk)

- 1-symmetric \Rightarrow 1-greedy
- ► ∃ a 1-greedy basis that is not 1-symmetric

Question (Albiac-Wojtaszczyk)

Suppose (e_i) is greedy. Is there a renorming of X so that (e_i) is 1-greedy in the new norm?

Corollary (Albiac-Wojtaszczyk)

- 1-symmetric \Rightarrow 1-greedy
- ∃ a 1-greedy basis that is not 1-symmetric

Question (Albiac-Wojtaszczyk)

Suppose (e_i) is greedy. Is there a renorming of X so that (e_i) is 1-greedy in the new norm?

Suppose (e_i) is suppression 1-unconditional, 1-democratic, and

$\varphi(n) \ge Cn$ $(n \ge 1).$

Then (e_i) is equivalent to the unit vector basis of ℓ_1 .

Corollary

The Haar basis for the dyadic Hardy space H_1 is greedy but not 1-democratic and suppression 1-unconditional (hence not 1-greedy) in any equivalent norm.

Corollary

The Tsirelson space T has a greedy basis, but no 1-democratic and suppression 1-unconditional (hence no 1-greedy) basis in any equivalent norm.

Suppose (e_i) is suppression 1-unconditional, 1-democratic, and

 $\varphi(n) \ge Cn$ $(n \ge 1).$

Then (e_i) is equivalent to the unit vector basis of ℓ_1 .

Corollary

The Haar basis for the dyadic Hardy space H_1 is greedy but not 1-democratic and suppression 1-unconditional (hence not 1-greedy) in any equivalent norm.

Corollary

The Tsirelson space T has a greedy basis, but no 1-democratic and suppression 1-unconditional (hence no 1-greedy) basis in any equivalent norm.

Suppose (e_i) is suppression 1-unconditional, 1-democratic, and

 $\varphi(n) \ge Cn$ $(n \ge 1).$

Then (e_i) is equivalent to the unit vector basis of ℓ_1 .

Corollary

The Haar basis for the dyadic Hardy space H_1 is greedy but not 1-democratic and suppression 1-unconditional (hence not 1-greedy) in any equivalent norm.

Corollary

The Tsirelson space T has a greedy basis, but no 1-democratic and suppression 1-unconditional (hence no 1-greedy) basis in any equivalent norm.

Theorem (DKOSZ, in press)

Suppose (e_i) is unconditional and bidemocratic. Given $\varepsilon > 0 \exists$ an equivalent norm so that (e_i) is 1-unconditional, 1-bidemocratic, and $(1 + \varepsilon)$ -greedy.

Sketch Proof.

- Characterize K-greedy bases by generalizing the Albiac-Wojtaszczyk characterization of 1-greedy bases.
- Define the new norm explicitly.
- Show the new norm is an equivalent norm using the bidemocratic property:

$$\left\| rac{arphi(|A|)}{|A|} \sum_{i \in A} e_i^*
ight\| \leqslant C \qquad (A \subset \mathbb{N}).$$

Theorem (DKOSZ, in press)

Suppose (e_i) is unconditional and bidemocratic. Given $\varepsilon > 0 \exists$ an equivalent norm so that (e_i) is 1-unconditional, 1-bidemocratic, and $(1 + \varepsilon)$ -greedy.

Sketch Proof.

- Characterize K-greedy bases by generalizing the Albiac-Wojtaszczyk characterization of 1-greedy bases.
- Define the new norm explicitly.
- Show the new norm is an equivalent norm using the bidemocratic property:

$$\left\|rac{arphi(|{oldsymbol A}|)}{|{oldsymbol A}|}\sum_{i\in {oldsymbol A}}e^*_i
ight\|\leqslant C\qquad ({oldsymbol A}\subset \mathbb{N}).$$

Theorem (DKOSZ, in press)

Suppose (e_i) is unconditional and bidemocratic. Given $\varepsilon > 0 \exists$ an equivalent norm so that (e_i) is 1-unconditional, 1-bidemocratic, and $(1 + \varepsilon)$ -greedy.

Sketch Proof.

- Characterize K-greedy bases by generalizing the Albiac-Wojtaszczyk characterization of 1-greedy bases.
- Define the new norm explicitly.
- Show the new norm is an equivalent norm using the bidemocratic property:

$$\left\|rac{arphi(|A|)}{|A|}\sum_{i\in A}e_i^*
ight\|\leqslant C\qquad (A\subset\mathbb{N}).$$

Theorem (DKOSZ, in press)

Suppose (e_i) is unconditional and bidemocratic. Given $\varepsilon > 0 \exists$ an equivalent norm so that (e_i) is 1-unconditional, 1-bidemocratic, and $(1 + \varepsilon)$ -greedy.

Sketch Proof.

- Characterize K-greedy bases by generalizing the Albiac-Wojtaszczyk characterization of 1-greedy bases.
- Define the new norm explicitly.
- Show the new norm is an equivalent norm using the bidemocratic property:

$$\left\|rac{arphi(|{oldsymbol A}|)}{|{oldsymbol A}|}\sum_{i\in {oldsymbol A}} {oldsymbol e}_i^*
ight\|\leqslant {oldsymbol C} \qquad ({oldsymbol A}\subset \mathbb{N}).$$

Theorem (DKOSZ, in press)

Suppose (e_i) is unconditional and bidemocratic. Given $\varepsilon > 0 \exists$ an equivalent norm so that (e_i) is 1-unconditional, 1-bidemocratic, and $(1 + \varepsilon)$ -greedy.

Sketch Proof.

- Characterize K-greedy bases by generalizing the Albiac-Wojtaszczyk characterization of 1-greedy bases.
- Define the new norm explicitly.
- Show the new norm is an equivalent norm using the bidemocratic property:

$$\left\|rac{arphi(|{oldsymbol A}|)}{|{oldsymbol A}|}\sum_{i\in {oldsymbol A}} {oldsymbol e}_i^*
ight\|\leqslant {oldsymbol C} \qquad ({oldsymbol A}\subset \mathbb{N}).$$

for $1 and <math>\varepsilon > 0 \exists$ an equivalent norm on $L_p[0, 1]$ so that the Haar basis is $(1 + \varepsilon)$ -greedy.

Theorem (DKOSZ)

Let (e_i) be a greedy basis. Given $\varepsilon > 0$, \exists an equivalent norm so that (e_i) is 1-unconditional and $(1 + \varepsilon)$ -democratic, hence $(2 + \varepsilon)$ -greedy.

The main ingredient is a combinatorial lemma which says that all democratic bases are "sufficiently bidemocratic".

Lemma

Let (e_i) be a normalized 1-unconditional, \triangle -democratic basis with fundamental function ($\varphi(n)$). Given $0 < q < 1 \exists C(q, \Delta)$ such that for all finite $E \subset \mathbb{N} \exists A \subset E$ with $|A| \ge q|E|$ such that

$$\left\|\frac{\varphi(|A|)}{|A|}\sum_{i\in A}e_i^*\right\|\leqslant C$$
Corollary

for $1 and <math>\varepsilon > 0 \exists$ an equivalent norm on $L_p[0, 1]$ so that the Haar basis is $(1 + \varepsilon)$ -greedy.

Theorem (DKOSZ)

Let (e_i) be a greedy basis. Given $\varepsilon > 0$, \exists an equivalent norm so that (e_i) is 1-unconditional and $(1 + \varepsilon)$ -democratic, hence $(2 + \varepsilon)$ -greedy.

The main ingredient is a combinatorial lemma which says that all democratic bases are "sufficiently bidemocratic".

Lemma

Let (e_i) be a normalized 1-unconditional, \triangle -democratic basis with fundamental function ($\varphi(n)$). Given $0 < q < 1 \exists C(q, \Delta)$ such that for all finite $E \subset \mathbb{N} \exists A \subset E$ with $|A| \ge q|E|$ such that

$$\left\|\frac{\varphi(|A|)}{|A|}\sum_{i\in A}e_i^*\right\|\leqslant C$$

Corollary

for $1 and <math>\varepsilon > 0 \exists$ an equivalent norm on $L_p[0, 1]$ so that the Haar basis is $(1 + \varepsilon)$ -greedy.

Theorem (DKOSZ)

Let (e_i) be a greedy basis. Given $\varepsilon > 0$, \exists an equivalent norm so that (e_i) is 1-unconditional and $(1 + \varepsilon)$ -democratic, hence $(2 + \varepsilon)$ -greedy.

The main ingredient is a combinatorial lemma which says that all democratic bases are "sufficiently bidemocratic".

Lemma

Let (e_i) be a normalized 1-unconditional, Δ -democratic basis with fundamental function $(\varphi(n))$. Given $0 < q < 1 \exists C(q, \Delta)$ such that for all finite $E \subset \mathbb{N} \exists A \subset E$ with $|A| \ge q|E|$ such that

$$\left\| rac{arphi(|\mathcal{A}|)}{|\mathcal{A}|} \sum_{i \in \mathcal{A}} oldsymbol{e}_i^*
ight\| \leqslant C.$$

Theorem

Suppose (e_i) is a greedy basis for X and $\varphi(n) \asymp n$ (e.g. dyadic H_1 and Tsirelson space). Then $\forall \varepsilon > 0$ there is a renorming so that (e_i) is $(1 + \varepsilon)$ -greedy.

(ロ) (同) (三) (三) (三) (○) (○)

Question (Albiac-Wojtaszczyk) Is every 1-greedy basis *C*-symmetric?

Theorem (DOSZ3)

There is a renorming of $\ell_2 \oplus \ell_{2,1}$ for which the natural basis is 1-greedy. This basis is not subsymmetric

Remark $l_{2,1}$ is a Lorentz space:

$$\|\sum a_i e_i\|_{2,1} = \sum a_i^* (\sqrt{i} - \sqrt{i-1}).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The renorming of $\ell_2 \oplus \ell_{2,1}$ is not given by a simple formula!

Question (Albiac-Wojtaszczyk)

Is every 1-greedy basis C-symmetric?

Theorem (DOSZ3)

There is a renorming of $\ell_2 \oplus \ell_{2,1}$ for which the natural basis is 1-greedy. This basis is not subsymmetric

Remark $\ell_{2,1}$ is a Lorentz space:

$$\|\sum a_i e_i\|_{2,1} = \sum a_i^* (\sqrt{i} - \sqrt{i-1}).$$

(日) (日) (日) (日) (日) (日) (日)

The renorming of $\ell_2 \oplus \ell_{2,1}$ is not given by a simple formula!

Question (Albiac-Wojtaszczyk)

Is every 1-greedy basis C-symmetric?

Theorem (DOSZ3)

There is a renorming of $\ell_2 \oplus \ell_{2,1}$ for which the natural basis is 1-greedy. This basis is not subsymmetric

Remark

 $\ell_{2,1}$ is a Lorentz space:

$$\|\sum a_i e_i\|_{2,1} = \sum a_i^* (\sqrt{i} - \sqrt{i-1}).$$

(日) (日) (日) (日) (日) (日) (日)

The renorming of $\ell_2 \oplus \ell_{2,1}$ is not given by a simple formula!

Greedification

Definition Let (e_i) be a basis for $(X, \|\cdot\|)$. For $x \in X$

 $f(x) = \inf\{||y||: y \text{ is a greedy rearrangement of } x\}.$

$$||x||_1 = \inf\{\sum_{i=1}^n f(x_i) \colon x = \sum_{i=1}^n x_i\}.$$

Remark $\|\cdot\|_1 = \|\cdot\| \Leftrightarrow (e_i)$ is 1-greedy for $\|\cdot\|$.

Theorem

For $X = \ell_2 \oplus_1 \ell_{2,1}$, the natural basis is 1-greedy for $\|\cdot\|_1$ (so $\|\cdot\|_1 = \|\cdot\|_2$).

Greedification

Definition Let (e_i) be a basis for $(X, \|\cdot\|)$. For $x \in X$

 $f(x) = \inf\{||y||: y \text{ is a greedy rearrangement of } x\}.$

$$||x||_1 = \inf\{\sum_{i=1}^n f(x_i) \colon x = \sum_{i=1}^n x_i\}.$$

Remark $\|\cdot\|_1 = \|\cdot\| \Leftrightarrow (e_i)$ is 1-greedy for $\|\cdot\|$.

Theorem For $X = \ell_2 \oplus_1 \ell_{2,1}$, the natural basis is 1-greedy for $\|\cdot\|_1$ (so $\|\cdot\|_1 = \|\cdot\|_2$).

Greedification

Definition Let (e_i) be a basis for $(X, \|\cdot\|)$. For $x \in X$

 $f(x) = \inf\{||y||: y \text{ is a greedy rearrangement of } x\}.$

$$||x||_1 = \inf\{\sum_{i=1}^n f(x_i) \colon x = \sum_{i=1}^n x_i\}.$$

Remark $\|\cdot\|_1 = \|\cdot\| \Leftrightarrow (e_i)$ is 1-greedy for $\|\cdot\|$.

Theorem

For $X = \ell_2 \oplus_1 \ell_{2,1}$, the natural basis is 1-greedy for $\|\cdot\|_1$ (so $\|\cdot\|_1 = \|\cdot\|_2$).

Open questions about the greedy constant

Question

Is every greedy basis $(1 + \varepsilon)$ -greedy in an equivalent norm?

Question

Is every bidemocratic greedy basis 1-greedy in an equivalent norm?

Question

Let $1 . Is the Haar basis for <math>L_p[0, 1]$ 1-greedy in an equivalent norm?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●